Задание #1.
Из вершины В ∆АВС на сторону АС опускаем высоту ВН.
АС = 6 (ед), ВН = 3 (ед).
Тогда S∆ABC = ½×AC×BH = ½×6 (ед)×3 (ед) = 9 (ед²).
9 (ед²).
Задание #2.
Из вершины А в ∆АВС на продолжение стороны СВ опускаем высоту АН.
АН = 5 (ед), СВ = 8 (ед).
Тогда S∆ABC = ½×AH×CB = ½×5 (ед)×8 (ед) = 20 (ед²).
20 (ед²).
Задание #1.
Из вершины В ∆АВС на сторону АС опускаем высоту ВН.
Площадь треугольника равна половине произведения его стороны на высоту, опущенной на эту сторону.АС = 6 (ед), ВН = 3 (ед).
Тогда S∆ABC = ½×AC×BH = ½×6 (ед)×3 (ед) = 9 (ед²).
9 (ед²).
Задание #2.
Из вершины А в ∆АВС на продолжение стороны СВ опускаем высоту АН.
Площадь треугольника равна половине произведения его стороны на высоту, опущенной на эту сторону.АН = 5 (ед), СВ = 8 (ед).
Тогда S∆ABC = ½×AH×CB = ½×5 (ед)×8 (ед) = 20 (ед²).
20 (ед²).