В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
justsgamer2000Kerzch
justsgamer2000Kerzch
11.10.2022 03:36 •  Геометрия

Найди следующие 3 члена геометрической прогрессии, если b1 = 6 и q= 5.

Показать ответ
Ответ:
nataotkidach
nataotkidach
16.01.2024 17:19
Добрый день! Конечно, я помогу вам с этим вопросом.

Дано: b1 = 6 (первый член), q = 5 (знаменатель).

Для того чтобы найти следующие члены геометрической прогрессии, мы будем использовать формулу общего члена геометрической прогрессии:

bn = b1 * q^(n-1)

где bn - n-ый член прогрессии, b1 - первый член прогрессии, q - знаменатель, n - номер члена прогрессии, который мы хотим найти.

Теперь мы можем пошагово решить эту задачу:

1. Найдем второй член прогрессии (b2):

b2 = b1 * q^(2-1)
b2 = 6 * 5^1
b2 = 6 * 5
b2 = 30

Таким образом, второй член прогрессии равен 30.

2. Найдем третий член прогрессии (b3):

b3 = b1 * q^(3-1)
b3 = 6 * 5^2
b3 = 6 * 25
b3 = 150

Итак, третий член геометрической прогрессии равен 150.

В итоге, первые три члена геометрической прогрессии с b1 = 6 и q = 5 равны: 6, 30, 150.

Надеюсь, это решение понятно для вас! Если у вас есть какие-либо дополнительные вопросы, пожалуйста, не стесняйтесь задавать.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота