Признак подобия треугольников: "Если угол одного треугольника равен углу другого треугольника, а стороны, образующие этот угол, пропорциональны в равном отношении, то такие треугольники подобны". В нашем случае наименьший угол треугольника лежит против меньшей стороны. Значит в треугольнике КLM этот угол лежит против стороны 2 см. Прилегающие к этому углу стороны равны 3см и 4см. В треугольнике АВС стороны, прилегающие к наименьшему углу равны 18см и 24см. Они пропорциональны соответствующим сторонам треугольника KLM с коэффициентом 6. Значит третья сторона треугольника АВС равна 2*6=12. Периметр треугольника АВС равна 12+18+24=54см. ответ: периметр треугольника АВС равен 54см.
В ромбе АВСD высота из тупого угла В делит противоположную сторону пополам. Следовательно, эта высота является и медианой. Значит треугольник АВD - равносторонний и сторона равна меньшей диагонали. Углы такого ромба равны: <A=60°, <B=120°, <C=60° и <D=120°. Предположим, что дана большая диагональ. Тогда в прямоугольном треугольнике АВО (один из четырех, на которые делят ромб его диагонали) <BAO=30° и против него лежит половина меньшей диагонали. Пусть она равна Х, тогда сторона ромба (гипотенуза) равна 2Х и по Пифагору 4Х²-Х²=8² или 3Х²=64, а Х²=64/3. Отсюда Х=8√3/3. Это половина меньшей диагонали BD,в диагональ BD=16√3/3≈9,24 см, то есть сторона ромба равна 16√3/3≈9,24 см. Если дана диагональ меньшая, то по Пифагору половина большей диагонали равна √(16²-8²)=8√3, а диагональ CD=16√3. тогда сторона ромба равна его меньшей диагонали =16 см. ответ: если дана меньшая диагонал, то сторона ромба равна 16см. если дана большая диагональ, то сторона ромба равна ≈9,24 см. Углы ромба равны два по 60° и два по120°.
ответ: периметр треугольника АВС равен 54см.
Предположим, что дана большая диагональ. Тогда в прямоугольном треугольнике АВО (один из четырех, на которые делят ромб его диагонали) <BAO=30° и против него лежит половина меньшей диагонали. Пусть она равна Х, тогда сторона ромба (гипотенуза) равна 2Х и по Пифагору 4Х²-Х²=8² или 3Х²=64, а Х²=64/3. Отсюда Х=8√3/3.
Это половина меньшей диагонали BD,в диагональ BD=16√3/3≈9,24 см, то есть сторона ромба равна 16√3/3≈9,24 см.
Если дана диагональ меньшая, то по Пифагору половина большей диагонали равна √(16²-8²)=8√3, а диагональ CD=16√3.
тогда сторона ромба равна его меньшей диагонали =16 см.
ответ: если дана меньшая диагонал, то сторона ромба равна 16см.
если дана большая диагональ, то сторона ромба равна ≈9,24 см.
Углы ромба равны два по 60° и два по120°.