Треугольник АВС, АВ=ВС, О-центр окружности, ВО=20, проводим перпендикуляр из точки О на АС=медиане=биссектрисе=радиусу, длина окружности=2*пи*радиус, 24пи=2*пи*радиус, радиус=12, проводим АО и СО - биссектрисы углов А и С соответственно, центр вписанной окружности лежит на пересечении биссектрис, , т.к ВО тоже биссектриса, АО=ВО=СО=20, треугольникАОС равнобедренный, АН=СН=корень(АО в квадрате-ОН в квадрате)=корень(400-144)=16, АС=2*АН=2*16=32, треугольник АВН, ВН=ВО+ОН=20+12=32, АВ=ВС=корень(АН в квадрате+ВН в квадрате)=корень(256+1024)=16*корень5, периметр=16*корень5+16*корень5+32=32*корень5+32
Точка равноудалённая от катетов образует внутри прямоугольного треугольника квадрат со стороной а, вершины которого - вершина прямого угла, точка на гипотенузе и две точки на катетах, от которых равноудалена заданная. Внутри прямоугольного образовались квадрат и два подобные между собой прямоугольных треугольника, которые подобны исходному треугольнику . пусть Один из катетов прямоугольного треугольника(1) - х и гипотенузой - 40 см, тогда соответствующий катет прямоугольного треугольника(2) - а см и гипотенузой - 30 см. Составим систему уравнений: Тогда один катет исходного прямоугольного треугольника - х+а=56 см. Второй катет по теореме Пифагора: = 1764, второй катет равен
Тогда один катет исходного прямоугольного треугольника - х+а=56 см. Второй катет по теореме Пифагора: = 1764, второй катет равен