60) S =(PK+MN)· h/2= 10·10=100 так как средняя линия равна половине сумм оснований, а это 2 радиуса по 5 единиц и высота там равна диаметру -10 ед.
59) ОК =MN/2=20/2=10 так как это радиус окружности
58) ML= MN+LK-NK=2+7-6=3 cложим все части сторон получим : 2+7+6+3=18 (частей) следовательно периметр делим на 18 . 54:18=3 (ед) - составляет 1 часть . Далее MN= 2·3=6 NK=6·3=18 LK=7·3=21 ML=3·3=9
57) АD = 15-8=7 так как сумма противоположных сторон равна 6+9=15 следовательно по свойству вписанной окружности и других противоположных сторон =15! P= BC+CD+AD+AB=8+9+7+6=30 ед
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то треугольники подобны.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ . Доказать: ΔАВС подобен ΔА₁В₁С₁. Доказательство: Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) . Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках: АВ₂ : А₁В₁ = АС : А₁С₁. Сравним полученную пропорцию с данной в условии: АВ : А₁В₁ = АС : А₁С₁ Значит, АВ₂ = АВ. Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию). Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит ΔАВС подобен ΔА₁В₁С₁. Доказано.
Объяснение:
60) S =(PK+MN)· h/2= 10·10=100 так как средняя линия равна половине сумм оснований, а это 2 радиуса по 5 единиц и высота там равна диаметру -10 ед.
59) ОК =MN/2=20/2=10 так как это радиус окружности
58) ML= MN+LK-NK=2+7-6=3 cложим все части сторон получим : 2+7+6+3=18 (частей) следовательно периметр делим на 18 . 54:18=3 (ед) - составляет 1 часть . Далее MN= 2·3=6 NK=6·3=18 LK=7·3=21 ML=3·3=9
57) АD = 15-8=7 так как сумма противоположных сторон равна 6+9=15 следовательно по свойству вписанной окружности и других противоположных сторон =15! P= BC+CD+AD+AB=8+9+7+6=30 ед
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ .
Доказать: ΔАВС подобен ΔА₁В₁С₁.
Доказательство:
Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) .
Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках:
АВ₂ : А₁В₁ = АС : А₁С₁.
Сравним полученную пропорцию с данной в условии:
АВ : А₁В₁ = АС : А₁С₁
Значит, АВ₂ = АВ.
Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию).
Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит
ΔАВС подобен ΔА₁В₁С₁.
Доказано.