Если трапеция описана около окружности, то суммы ее противоположных сторон равны. Сумма боковых сторон = 9a+16a+9a+16=50a, значит сумма оснований также = 50a. Радиус вписанной в трапецию окружности = 1/2 h = 12 см. Радиус можно найти по формуле r=S/p, где S - площадь, p - полупериметр. Найдем p, зная суммы противоположных сторон: p=50a+50a/2=50a S = a+b/2 * h, где а и b - основания; Сумма оснований = 50а, значит полусумма = 25а, следовательно S = 25a*24 Вернемся к формуле: 25a*24/50a=12 600a=600, значит а=1 Средняя линия - это полусумма оснований, значит, она равна = 25а=25 (см) ответ: 25 см.
а.
1.Б1С параллелен БС (т.к. Б1С является средней линией по определению), следовательно, БС параллелен МН.
2. Рассмотрим треугольники ВВ1К и АВ1М. Эти треугольники равны по второму признаку, т.к.: (В1А=ВВ1(по условию), угол ВВ1К = угол АВ1М(как вертикальные), угол МАВ1= угол КВВ1 (т к. БС параллелен МН --> накрест лежащие углы)
3. Аналогично с трегольниками КС1С и НС1А. (они равны по второму признаку: АС1=СС1 , угол АС1Н= угол СС1К, угол С1АН = угол С1СК)
4. если треугольники равны, значит и из площади равны. Рассмотрим площадь треугольника МКН= МВ1А + АВ1КС1 + АС1Н = ВВ1К + АВ1КС1 + АС1Н= ВВ1К + АВ1КС1 + КСС1 = АВС (по чертежу). ч.т.д.
б. еще не решён)
p=50a+50a/2=50a
S = a+b/2 * h, где а и b - основания;
Сумма оснований = 50а, значит полусумма = 25а, следовательно
S = 25a*24
Вернемся к формуле:
25a*24/50a=12
600a=600, значит а=1
Средняя линия - это полусумма оснований, значит, она равна = 25а=25 (см)
ответ: 25 см.