В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
tamtamtamira
tamtamtamira
17.12.2020 21:38 •  Геометрия

Найди значения x и y , при которых векторы a {21;x;35} и b {9;−3;y} будут коллинеарны. В ответ введи сумму x+y

Показать ответ
Ответ:
ДарьяТихонюк
ДарьяТихонюк
10.01.2024 12:28
Для того, чтобы векторы a и b были коллинеарными, необходимо и достаточно, чтобы они были пропорциональными друг другу.

То есть, a и b коллинеарны, если существует такое число k, что:
a = kb

Зная, что a = {21;x;35} и b = {9;−3;y}, мы можем записать это условие в виде уравнения:
{21;x;35} = k * {9;−3;y}.

Для того чтобы решить это уравнение, проведем пропорцию между соответствующими компонентами векторов:

21/9 = x/(-3) = 35/y

По первой части пропорции:
21/9 = x/(-3)
Упрощая эту пропорцию, умножим обе стороны на 9:
21 * 9 / 9 = x * 9 / (-3)
21 = -3x
Теперь разделим обе стороны на -3:
21 / -3 = -3x / -3
-7 = x

Теперь, используем вторую часть пропорции:
21/9 = 35/y
Упрощая эту пропорцию, умножим обе стороны на y:
21y / 9 = 35
Умножим обе стороны на 9:
21y = 35 * 9
21y = 315
Разделим обе стороны на 21:
y = 315 / 21
y = 15

Таким образом, мы нашли, что x = -7 и y = 15.

Чтобы получить сумму x + y, нужно сложить эти значения:
-7 + 15 = 8.

Ответ: сумма x+y равна 8.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота