Обозначим высоту треугольника АВС :ВД=Х,имеющего углы А=45*,В=105* и С=30* соответственно,согласно условия; Тогда АВ=Х\/2; ВС=2Х( сторона против угла 30*); а АД=Х и ДС=(Х\/3)2; соответственно; Находим площадь через сторону АС и высоту Х, получим:Х^2=80/(2+\/3); Откуда Х=\/80/(2+\/3); Зная высоту Х и стороны АВ=Х\/2;ВС=2Х , а также СД=Х+Х\/3/2; НАХОДИМ каждую высоту, разделив 2Sпл.на каждую из сторон: Например:2S/2X=S/\/80(2+\/3); А также 3-ю высоту:2S/X\/2=2S/(X\/2) ответ: h1=\/80/(2+\/3); h2=S/\/80(2+\/3); h3=2S/(X\/2)
ответ короч
Объяснение:
Дано:
∆АВС - прямокутний (∟В = 90°).
∆А1В1С1 - прямокутний (∟В1 = 90°).
ВС = B1C1; BN - бісектриса ∟АВС;
B1N1 - бісектриса ∆А1В1С1.
Довести: ∆АВС = ∆А1В1С1.
Доведения:
За умовою ∟ABC = 90° i BN - бісектриса ∟ABC.
За означенням бкектриси кута маємо: ∟ABN = ∟NBC = 90° : 2 = 45°.
Аналогічно B1N1 - бісектриса ∟А1В1С1, тоді ∟A1B1N1 = ∟N1B1C1 = 45°.
Розглянемо ∆NBC i ∆N1B1C1:
1) BN = B1N1 (за умовою);
2) ВС = В1С1 (за умовою);
3) ∟NBC = ∟N1B1C1 = 45°.
За I ознакою piвностi трикутників маємо:
∆NВС = ∆N1B1C1. Звідси ∟C = ∟С1.
Розглянемо ∆АВС i ∆А1В1С1:
1) ∟ABC = ∟А1В1С1 = 90°;
2) ВС = B1C1;
3) ∟C = ∟С1.
За ознакою piвностi прямокутних трикутників маємо: ∆АВС = ∆А1В1С1.
Доведено.