Пусть в треугольнике АВС ВД - биссектриса угла В, СЕ - биссектриса угла С, О - точка пересечения биссектрис.
Обозначим Х - угол ВОС. В треугольнике ВОС сумма углов =180 гр, то есть В/2 + С/2 + Х = 180 (1) В треугольнике АВС сумма углов = 180 гр, то есть В + С + А = 180 (2)
По условию задачи угол А равен углу между биссектрисами. Угол А не может быть равен углу Х, действительно, если бы это было так, то вычитая из уравнения (2) уравнение (1) мы получим В/2 + С/2 = 0, что невозможно.
Поэтому угол А = угол ДОС, то есть А = 180 - Х Подставляем это в уравнение (2), получаем В + С + 180 - Х = 180, откуда В + С = Х В/2 + С/2 = Х/2 Подставляем это в уравнение (1), получаем Х/2 + Х = 180 3Х/2 = 180 х = 120 Так как А = 180 - Х, то А = 180 - 120 = 60 гр
В треугольнике ABC с угла B Проведена прямая BD. Найдите отношение P(∆BDC)/P(∆ABC), если ∠ABC=∠BDC, AB=8, AC=12, DC=3. Надо найти сторону BD и периметры ∆ ABC и ∆ BDC .
ответ: 1 : 2 , 4 , 26 , 13 .
Объяснение:
ΔCDB ~ ΔCBA ( по первому признаку подобия) и почти конец
О - точка пересечения биссектрис.
Обозначим Х - угол ВОС.
В треугольнике ВОС сумма углов =180 гр, то есть
В/2 + С/2 + Х = 180 (1)
В треугольнике АВС сумма углов = 180 гр, то есть
В + С + А = 180 (2)
По условию задачи угол А равен углу между биссектрисами.
Угол А не может быть равен углу Х, действительно,
если бы это было так, то вычитая из уравнения (2) уравнение (1)
мы получим В/2 + С/2 = 0, что невозможно.
Поэтому угол А = угол ДОС, то есть А = 180 - Х
Подставляем это в уравнение (2), получаем
В + С + 180 - Х = 180, откуда
В + С = Х
В/2 + С/2 = Х/2
Подставляем это в уравнение (1), получаем
Х/2 + Х = 180
3Х/2 = 180
х = 120
Так как А = 180 - Х, то
А = 180 - 120 = 60 гр
В треугольнике ABC с угла B Проведена прямая BD. Найдите отношение P(∆BDC)/P(∆ABC), если ∠ABC=∠BDC, AB=8, AC=12, DC=3. Надо найти сторону BD и периметры ∆ ABC и ∆ BDC .
ответ: 1 : 2 , 4 , 26 , 13 .
Объяснение:
ΔCDB ~ ΔCBA ( по первому признаку подобия) и почти конец
∠BDC= ∠ABC ← условие
∠C _общий угол
BC/AC =DC/BC = BD / AB =P(∆BDC)/P(∆ABC)
BC² =AC *DC=12*3 =36 ⇒ BC=6 ; P(∆BDC)/P(∆ABC) =BC/AC=6/12 =1: 2
BC/AC = BD / AB ⇒ BD =(BC/AC)*ABС =(6/12)*8 = 4 ;
P(∆ ABC) =AB++AC+BC =8+12+6 =26 ;
P(∆BDC) = (1/2)*P(∆ABC) =(1/2)*26 =13 или 3+4+6 =13 .