Чтобы найти высоту, надо сначала найти площадь. А чтобы найти площадь, надо найти размеры сторон - и диагоналей тоже.
Ромб делится диагоналями на четыре равных прямоугольных треугольника. У каждого из них катеты - это половинки диагоналей, а гипотенуза равна боковой стороне. Боковая сторона задана - это 200/4 = 50.
Далее речь идет об этом прямоугольном треугольнике.
Поскольку катеты отностятся как 3:4, то это "египетский" треугольник, то есть треугольник, подобный треугольнику со стронами 3,4,5. Поскольку гипотенуза равна 50, катеты равны 30 и 40.
Технически это можно проделать и "тупым" и не одним :) - можно например так.
Пусть один катет 3*х тогда другой 4*х, тогда
3^2*x^2 + 4^2*x^2 = 50^2;
x^2 = 100; x = 10; катеты 30 и 40.
Площадь такого треугольника 30*40/2 = 600;
Площадь всего ромба в 4 раза больше, то есть 2400;
Площадь равна высоте, умноженной на боковую сторону, то есть высота равна
2400/50 = 48.
Такой вот неприятный случай, простое и очевидное замечание вызвало, мягко говоря, сильное непонимание. Придется кое что объяснить.
Если очень трудно сосчитать площадь АВС (обозначения на рисунке sana2008), как АС*ВО/2 = 60*40/2 = 1200, или на тот случай, когда трудно сосчитать площадь ромба как АС*BD/2 = 2400, то в этом случае, конечно, надо применить формулу Герона, она очень кстати.
Применяем её для треугольника АВС. АВ =ВС = 50, АС = 60, p = (50+50+60)/2 = 80;
р - ВС = р - АВ = 30
р - АС = 20
S^2 = 80*30*30*20 = (1200)^2
S = 1200 Ну и конечно - графически. Только вот сколько не строй "египетский" треугольник с гипотенузой 50, у него высота все равно 24. А это как раз расстояние от центра ромба до стороны, высота ромба в 2 раза больше.
Ошибка у sana2008 тривиальная, она почему то использовала АС = 30 и получила неверный результат, хотя отлично знала что АС = 60. Это бывает... но зачем же упрямиться :
Наклонная равна 20см. чему равна проекция этой наклонной на плоскость, если
наклонная составляет с плоскостью угол 45 градусов.
L=20 cм, l = 20*cos45 = 20*√2/2 = 10√2 см
Точка А отстоит от плоскости на расстоянии 26 см. Найдите длину наклонной, которая составляет с плоскостью угол 30 градусов .
H=26 см, L=H/sin30 = 2H = 52 см
Дан куб ABCDA1B1C1D1,
1) Выпишите грани, параллельные ребру AA1 - не считая граней в которых лежит АА1, BB1C1C и СС1D1D
2) выпишите рёбра, скрещивающиеся с ребром ВС - А1В1, С1D1
3) выпишите рёбра, перпендикулярные плоскости (ABB1) - BC,B1C1,AD,A1D1
4) выпишите плоскости, перпендикулярные ребру AD - ABB1A1, CDD1C1
Радиусы оснований усечённого конуса равны Здм и 7дм. Образующая - 5дм. Найдите площадь осевого сечения.
Осевое сечение - трапеция с основаниями 6дм и 14 дм, и боковой стороной 5дм
S = h*(6+14)/2 = 10h.
Высоту найдем по теореме Пифагора h^2=5^2-((14-6)/2)^2 = 25-16 = 9, h=3 дм
S = 10*3 = 30 дм^2
Шар пересечён плоскостью на расстоянии Зсм от центра. Найдите площадь сечения, если радиус шара равен 5см.
Радиус сечения найдем из треугольника r^2 = R^2 - h^2 = 5^2-3^2 = 25-9 = 16
r = 4 см. S = пr^2 = 16п см^2
Измерения прямоугольного параллелепипеда равны 8см, 12см, 18см. найдите ребро куба, объём которого равен объёму этого параллелепипеда.
V = abc = 8*12*18 = 1728 см^3
Vкуба = а^3 = 1728, a = 4 ∛18 см
сделать что-то простое :)
Чтобы найти высоту, надо сначала найти площадь. А чтобы найти площадь, надо найти размеры сторон - и диагоналей тоже.
Ромб делится диагоналями на четыре равных прямоугольных треугольника. У каждого из них катеты - это половинки диагоналей, а гипотенуза равна боковой стороне. Боковая сторона задана - это 200/4 = 50.
Далее речь идет об этом прямоугольном треугольнике.
Поскольку катеты отностятся как 3:4, то это "египетский" треугольник, то есть треугольник, подобный треугольнику со стронами 3,4,5. Поскольку гипотенуза равна 50, катеты равны 30 и 40.
Технически это можно проделать и "тупым" и не одним :) - можно например так.
Пусть один катет 3*х тогда другой 4*х, тогда
3^2*x^2 + 4^2*x^2 = 50^2;
x^2 = 100; x = 10; катеты 30 и 40.
Площадь такого треугольника 30*40/2 = 600;
Площадь всего ромба в 4 раза больше, то есть 2400;
Площадь равна высоте, умноженной на боковую сторону, то есть высота равна
2400/50 = 48.
Такой вот неприятный случай, простое и очевидное замечание вызвало, мягко говоря, сильное непонимание. Придется кое что объяснить.
Если очень трудно сосчитать площадь АВС (обозначения на рисунке sana2008), как АС*ВО/2 = 60*40/2 = 1200, или на тот случай, когда трудно сосчитать площадь ромба как АС*BD/2 = 2400, то
в этом случае, конечно, надо применить формулу Герона, она очень кстати.
Применяем её для треугольника АВС. АВ =ВС = 50, АС = 60, p = (50+50+60)/2 = 80;
р - ВС = р - АВ = 30
р - АС = 20
S^2 = 80*30*30*20 = (1200)^2
S = 1200
Ну и конечно - графически. Только вот сколько не строй "египетский" треугольник с гипотенузой 50, у него высота все равно 24. А это как раз расстояние от центра ромба до стороны, высота ромба в 2 раза больше.
Ошибка у sana2008 тривиальная, она почему то использовала АС = 30 и получила неверный результат, хотя отлично знала что АС = 60. Это бывает... но зачем же упрямиться :