1. 1) 50: 2 = 25 (- полусумма сторон) 2) пусть х + 5 - большая сторона, тогда х - наименьшая. полусумма равна 25, имеем уравнение: х+х+5=25, отсюда х = 10. 3) итак, наименьшие стороны равны по 10 см, а наибольшие по 15 см.2.30 градусов, в ромбе все стороны равны, и если сторона равна диагонали, то образуется равносторонний треугольник у которого все внутренние углы равны 60 градусов, вторая диагональ есть биссектриса внутреннего угла - делит его пополам3. 0,5*ac=корень (ad в квадрате + (0,5*bd) в квадрате) ac = 2*корень (6 в квадрате + 2,5 в квадрате) = 2*6,5 = 13
Если прямая перпендикулярна плоскости, то она перпендикулярна к любой прямой, лежащей в этой плоскости. => DC перпендикулярна высоте СН прямоугольного ∆ АВС.
Расстояние от точки до прямой измеряется длиной отрезка, проведенного перпендикулярно от точки к данной прямой.
Высота СН - проекция наклонной DH.
По т. о 3-х пп СН⊥АВ => DH⊥АВ, DH - искомое расстояние.
ответ: 25 (ед. длины).
Объяснение:
Если прямая перпендикулярна плоскости, то она перпендикулярна к любой прямой, лежащей в этой плоскости. => DC перпендикулярна высоте СН прямоугольного ∆ АВС.
Расстояние от точки до прямой измеряется длиной отрезка, проведенного перпендикулярно от точки к данной прямой.
Высота СН - проекция наклонной DH.
По т. о 3-х пп СН⊥АВ => DH⊥АВ, DH - искомое расстояние.
Решение.
DH найдем через площадь ∆ АВС и его высоту СН.
Ѕ(АВС)=АС•ВС/2
Ѕ(АВС)=СН•АВ/2 ⇒ АС•ВС=СН•АВ
АВ=√(АС²+ВС²)=√(40²+30²)=50
АС•ВС=40•30=1200
СН=АС•ВС:АВ=1200:50=24
DH=√(DC^2+CH^2)=√(49+576)=25
DH=25.