1. Диагонали ромба делятся пополам. Тогда в прямоугольном треугольнике SOC по Пифагору найдем высоту пирамиды SO. SO = √(SC²-OC²) = √(15²-9²) = 12 см.
В прямоугольном треугольнике SOD по Пифагору найдем гипотенузу SD (меньшую боковую грань пирамиды).
SD = √(SO²+OD²) = √(12²+5²) = 13 см.
2. Пирамида правильная => в основании лежит правильный треугольник, а вершина проецируется в центр треугольника (пересечение высот и медиан - в правильном треугольнике это одно и то же). Двугранный угол при стороне основания - это угол между апофемой (высотой грани) и плоскостью основания, то есть это угол SHO. Тогда в прямоугольном треугольнике SHO угол OSH равен 30 градусов (по сумме острых углов треугольника) и гипотенуза SH = 2·OH (по свойству катета, лежащего против угла 30 градусов). По Пифагору 4·ОН² - ОН² = SO². Или 3·ОН² = 36. =>
ОН = 2√3 см. => SH = 4√3 см. ОН - это 1/3 высоты основания. Высота основания ВН = 3·2√3 = 6√3 см. Сторону основания найдем из формулы высоты основания:
h = (√3/2)·h => a = 2h/√3 = 12 см.
Тогда площадь основания пирамиды равна по формуле:
So = (√3/4)·а² = 36√3 cм². Площадь боковой грани (площадь треугольника) равна
дано: решение
c = 17 (см) p = a + b + c
a = x пусть катет a = x, тогда катет b = x - 7
b = x - 7 так как треугольник прямоугольный, то
x мы найдем по теореме пифагора:
p - ? c² = x² + (x - 7)²
17² = x² + x² - 14x + 49
2x² - 14x + 49 - 289 = 0
2x² - 14x - 240 = 0
d₁ = 7² - 2 * (-240) = 49 - (-480) = 529
d₁ > 0, уравнение имеет 2 корня.
x₁ = -(-7) + √529 / 2 = 7 + 23 / 2 = 30 / 2 = 15
x₂ = -(-7) - √529 / 2 = 7 - 23 / 2 = -16 / 2 = -8
второй корень уравнение не подойдет, т.к он имеет отрицательное значение, а длина не может быть отрицательным числом, значит x = 15.
a = 15
b = 15 - 7 = 8
p = 17 + 15 + 8 = 40 (см)
ответ: p = 40 (см)
1. 13 см. 2. Sполн = 108√3см².
Объяснение:
1. Диагонали ромба делятся пополам. Тогда в прямоугольном треугольнике SOC по Пифагору найдем высоту пирамиды SO. SO = √(SC²-OC²) = √(15²-9²) = 12 см.
В прямоугольном треугольнике SOD по Пифагору найдем гипотенузу SD (меньшую боковую грань пирамиды).
SD = √(SO²+OD²) = √(12²+5²) = 13 см.
2. Пирамида правильная => в основании лежит правильный треугольник, а вершина проецируется в центр треугольника (пересечение высот и медиан - в правильном треугольнике это одно и то же). Двугранный угол при стороне основания - это угол между апофемой (высотой грани) и плоскостью основания, то есть это угол SHO. Тогда в прямоугольном треугольнике SHO угол OSH равен 30 градусов (по сумме острых углов треугольника) и гипотенуза SH = 2·OH (по свойству катета, лежащего против угла 30 градусов). По Пифагору 4·ОН² - ОН² = SO². Или 3·ОН² = 36. =>
ОН = 2√3 см. => SH = 4√3 см. ОН - это 1/3 высоты основания. Высота основания ВН = 3·2√3 = 6√3 см. Сторону основания найдем из формулы высоты основания:
h = (√3/2)·h => a = 2h/√3 = 12 см.
Тогда площадь основания пирамиды равна по формуле:
So = (√3/4)·а² = 36√3 cм². Площадь боковой грани (площадь треугольника) равна
Sг = (1/2)·SH·АC = (1/2)·4√3·12 = 24√3 см². Таких граней три. =>
Sбок = 3·24√3 = 72√3 см². Площадь полной поверхности пирамиды равна
S = So+Sбок = 36√3+72√3 = 108√3см².