Пусть в параллелограмме ABCD (В - тупой угол) проведены высоты ВН и ВН1. Он нас хотят узнать величину угла НВН1. 1) Так как угол В=140, то и противолежащий угол D=140. Значит углы А и С равны по 180-140=40. 2) Так как образовавшийся треугольник АВН - прямоугольный, то сумма его острых углов А и АВН равна 90. Угол АВН равен 90-40=50. 3) Аналогично в треугольнике ВСН1 угол СВН1 равен 90-40=50. 4) Так как угол В - это сумма углов АВН+НВН1+СВН, из которорых один - искомый, а два других известны, то уголо НВН1 будет равен 140-50-50=40 ответ: 40 градусов.
1) Так как угол В=140, то и противолежащий угол D=140. Значит углы А и С равны по 180-140=40.
2) Так как образовавшийся треугольник АВН - прямоугольный, то сумма его острых углов А и АВН равна 90. Угол АВН равен 90-40=50.
3) Аналогично в треугольнике ВСН1 угол СВН1 равен 90-40=50.
4) Так как угол В - это сумма углов АВН+НВН1+СВН, из которорых один - искомый, а два других известны, то уголо НВН1 будет равен 140-50-50=40
ответ: 40 градусов.
ответ:S=12P⋅h,S=12⋅9⋅7√2=97√4
Объяснение:
найдем сторону основания правильной пирамиды по формуле a = R√3, a = √ · √ = 3
найдем периметр основания Р = 3·а, Р = 9
радиус вписанной в правильный треугольник окружности в 2 раза меньше радиуса описанной около этого треугольника окружности, т.е. R = 2r, тогда OP=3√2
из прямоугольного треугольника МОР по теореме Пифагора находим апофему МР: MP=MO2+OP2−−−−−−−−−−√,
МР=1+|3√2|2−−−−−−−−√=1+34−−−−−√=7√2
вычислим площадь боковой поверхности правильной пирамиды: S=12P⋅h,S=12⋅9⋅7√2=97√4