Проведем произвольную прямую а. Отметим на ней точку В.
1) Из вершины В данного угла раствором циркуля, равным длине ВК, делаем насечки М и Е на сторонах угла.
2) Соеденим точки М и Е.
3) Отложим на прямой а от В отрезок BК, равный ВМ=биссектрисе ВК.
4) Из точки К проведем полуокружность радиусом, равным отрезку МЕ
5) От В раствором циркуля, равным ВЕ, проведем полуокружность до пересечения с полуокружностью из К
6) Через точку пересечения полуокружностей проведем луч ВЕ'. Данный по условию угол построен.
7) Точно так же построим угол, равный построенному, в другой полуплоскости от прямой а. Получившийся угол равен двум углам ВКС ( в котором ВК - биссектриса)
8) Из К, как из центра, проведем полуокружность радиусом. равным отрезку СК. Точку пересечения с лучом ВЕ' обозначим С.
9) От С через К проведем прямую до пересечения со второй стороной построенного угла ( которая по другую сторону от а).Точку пересечения обозначим А.
10) Треугольник АВС построен. В нем ВК - биссектриса заданной длины, угол СВА=2 угла СВК, КС равен заданному отрезку СК.
Отрезки касательных к окружности, проведенных из одной точки, равны.Рассмотрим рисунок, данный в приложении. Как равные отрезки из одной точки, ВК=ВЕ=5 смАК=АН=4 смЦентр окружности лежит на биссектрисе угла, радиус и касательная - перпендикулярны, ⇒ точка касания окружности и основания треугольника - основание высоты, которая в равнобедренном треугольнике еще и биссектриса и медиана. Следовательно, НС=НА=СЕ=4Периметр треугольника равен сумме отрезков, на которые окружность в точках касания делит его стороны. Р=10+4=14 смНаверное так
Построение:
Проведем произвольную прямую а. Отметим на ней точку В.
1) Из вершины В данного угла раствором циркуля, равным длине ВК, делаем насечки М и Е на сторонах угла.
2) Соеденим точки М и Е.
3) Отложим на прямой а от В отрезок BК, равный ВМ=биссектрисе ВК.
4) Из точки К проведем полуокружность радиусом, равным отрезку МЕ
5) От В раствором циркуля, равным ВЕ, проведем полуокружность до пересечения с полуокружностью из К
6) Через точку пересечения полуокружностей проведем луч ВЕ'. Данный по условию угол построен.
7) Точно так же построим угол, равный построенному, в другой полуплоскости от прямой а. Получившийся угол равен двум углам ВКС ( в котором ВК - биссектриса)
8) Из К, как из центра, проведем полуокружность радиусом. равным отрезку СК. Точку пересечения с лучом ВЕ' обозначим С.
9) От С через К проведем прямую до пересечения со второй стороной построенного угла ( которая по другую сторону от а).Точку пересечения обозначим А.
10) Треугольник АВС построен. В нем ВК - биссектриса заданной длины, угол СВА=2 угла СВК, КС равен заданному отрезку СК.