1) Условие: даны 2 стороны (данных размеров) и угол между ними. Допустим, угол А, стороны АB, AD. Построение : При транспортира в точке B от AB откладываем угол 180 - A. После этого на этом углу откладываем BC длиной = AD. Потом соединяем точки C и D. 2) Условие : Есть 3 точки A B C. Построение : Примем, что B - начальный угол параллелограмма. Соединяем AB и BC. Теперь задача схожа с предыдущей (т.к. угол мы можем померить). Вариаций параллеллограмма может быть 3 (т.к. за начальный угол мы можем взять и А и B и С и в каждый раз у нас будут разные параллелограммы) 3) Построение : От вершины D откладываем угол D равный углу А (чтобы он были симметричен А) и откладываем DC равную AB. Потом соединяем B и C
Сделаем это задание за Теоремой про равность треугольников
Мы знаем что ab = ad тогда треугольник abd - равнобедренный треугольник и также треугольник bdc равнобедренный треугольник
Тогда за третей ознакой равенства:
1. AB = AD
2. BC = CD
3. сторона AC - общая.
Значит, ∠BAO = ∠DAO
Тогда За 1 признаку докажем что эти треугольники равны, так как мы нашли что углы равны
( Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны. )
AB = AD AO - общая
∠BAO = ∠DAO за 3 ознакой. С этого ΔABO = ΔADO
Из равенства ΔABO и ΔADO вытекает равенство углов ∠BOA и ∠DOA. поэтому ∠BOA = ∠DOA = 90°. Следовательно AC⊥BD
Построение : При транспортира в точке B от AB откладываем угол 180 - A. После этого на этом углу откладываем BC длиной = AD. Потом соединяем точки C и D.
2) Условие : Есть 3 точки A B C.
Построение : Примем, что B - начальный угол параллелограмма. Соединяем AB и BC. Теперь задача схожа с предыдущей (т.к. угол мы можем померить). Вариаций параллеллограмма может быть 3 (т.к. за начальный угол мы можем взять и А и B и С и в каждый раз у нас будут разные параллелограммы)
3) Построение : От вершины D откладываем угол D равный углу А (чтобы он были симметричен А) и откладываем DC равную AB. Потом соединяем B и C
Доказано // Удачи ;D
Объяснение:
Сделаем это задание за Теоремой про равность треугольников
Мы знаем что ab = ad тогда треугольник abd - равнобедренный треугольник и также треугольник bdc равнобедренный треугольник
Тогда за третей ознакой равенства:
1. AB = AD
2. BC = CD
3. сторона AC - общая.
Значит, ∠BAO = ∠DAO
Тогда За 1 признаку докажем что эти треугольники равны, так как мы нашли что углы равны
( Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны. )
AB = AD AO - общая
∠BAO = ∠DAO за 3 ознакой. С этого ΔABO = ΔADO
Из равенства ΔABO и ΔADO вытекает равенство углов ∠BOA и ∠DOA. поэтому ∠BOA = ∠DOA = 90°. Следовательно AC⊥BD
И этим мы доказали что O - середина BD
Доказано // Удачи ;D