Фигура в описании - пирамида, в основании ромб, у которого диагонали пересекаются под прямым углом. Рассмотрим любой из четырех треугольников в основании пирамиды - они все прямоугольные с катетами по 12:2= 6 см и 16:2=8 см. соответственно гипотенуза или любая сторона ромба по теореме пифагора равна: корень из 36+64=корень из 100=10 (см).
Расстояние от точки P до плоскости ромба - это высота пирамиды, а так как Точка P, расположенная вне плоскости ромба удалена от всех сторон ромба на 8 см, то расстояние от точки P до плоскости ромба - высота пирамиды, основание которой находится в центре вписанной окружности в ромб. Проведем отрезок из основания высоты (это центр вписанной окружности) к стороне ромба, этот отрезок перпендикулярен стороне ромба. Найдем высоту пирамиды как катет прямоугольного треугольника по теореме пифагора, где гипотенуза - это апофама пирамиды и по условию равна 8 см. А катет как радиус окружности из соотношений в прямоуг. треугольнике. r^2=(8^2/10)*(6^2/10)=(8*6/10) ^2, r=4,8, тогда высота =корень из 64-23,04=корень из 40,96= 6,4 (см).
\\\ПРИЗНАК ПЕРПЕНДИКУЛЯРНОСТИ ПРЯМОЙ И ПЛОСКОСТИ. Если прямая, пересекающая плоскость, перпендикулярна двум прямым в этой плоскости, проходящим через точку пересечения данной прямой и плоскости, то она перпендикулярна плоскости.
Определение: Прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой в этой плоскости.
Расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через другую прямую параллельно первой, называется расстоянием между скрещивающимися прямыми
Прямые АA1 и BD1 скрещивающиеся.
Пусть точка О - точка пересечения диагоналей Квадрата ABCD.
АA1 перпендикулярна АB
AA1 перпендикулярна AD (следует из определения прямоугольног о параралелипипеда)
поєтому
AA1 перпендикулярна плоскости ABD а значит и любой прямой лежащей в этой плоскости в частности пряммой AO
Аналогично доказываем, что прямая BB1 и пряммая АО перпендикулярны
Пряммые АО и BD перпендикулярны как диагонали квадрата
Итак, ОА перпендикулярна двум пересекающимся прямым BB1 и BD плоскости BDB1, а значит она препендикулрна этой плоскости, а значит и перпендикулярна и любой прямой лежащей в этой плоскости, в частности
АО перпендикулярна BD1.
Пряммая AA1 не лежащая в плосоксти BB1D паралельна двум прямым єтой плоскости (а именно BB1 и DD1 , следует из свойств прямоугольного параллелипипеда), поэтому она параллельна плоскости BB1D(содержащей пряммую BD1)
Далее пряммая АО перпендикулярна прямым AA1 и B1D. По определению расстояние от ребра AA1 до диагонали параллелепипеда BD1 это отрезок
Фигура в описании - пирамида, в основании ромб, у которого диагонали пересекаются под прямым углом. Рассмотрим любой из четырех треугольников в основании пирамиды - они все прямоугольные с катетами по 12:2= 6 см и 16:2=8 см. соответственно гипотенуза или любая сторона ромба по теореме пифагора равна: корень из 36+64=корень из 100=10 (см).
Расстояние от точки P до плоскости ромба - это высота пирамиды, а так как Точка P, расположенная вне плоскости ромба удалена от всех сторон ромба на 8 см, то расстояние от точки P до плоскости ромба - высота пирамиды, основание которой находится в центре вписанной окружности в ромб. Проведем отрезок из основания высоты (это центр вписанной окружности) к стороне ромба, этот отрезок перпендикулярен стороне ромба. Найдем высоту пирамиды как катет прямоугольного треугольника по теореме пифагора, где гипотенуза - это апофама пирамиды и по условию равна 8 см. А катет как радиус окружности из соотношений в прямоуг. треугольнике. r^2=(8^2/10)*(6^2/10)=(8*6/10) ^2, r=4,8, тогда высота =корень из 64-23,04=корень из 40,96= 6,4 (см).
\\\ПРИЗНАК ПЕРПЕНДИКУЛЯРНОСТИ ПРЯМОЙ И ПЛОСКОСТИ.
Если прямая, пересекающая плоскость, перпендикулярна двум прямым в этой плоскости, проходящим через точку пересечения данной прямой и плоскости, то она перпендикулярна плоскости.
Определение: Прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой в этой плоскости.
Расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через другую прямую параллельно первой, называется расстоянием между скрещивающимися прямыми
Прямые АA1 и BD1 скрещивающиеся.
Пусть точка О - точка пересечения диагоналей Квадрата ABCD.
АA1 перпендикулярна АB
AA1 перпендикулярна AD (следует из определения прямоугольног о параралелипипеда)
поєтому
AA1 перпендикулярна плоскости ABD а значит и любой прямой лежащей в этой плоскости в частности пряммой AO
Аналогично доказываем, что прямая BB1 и пряммая АО перпендикулярны
Пряммые АО и BD перпендикулярны как диагонали квадрата
Итак, ОА перпендикулярна двум пересекающимся прямым BB1 и BD плоскости BDB1, а значит она препендикулрна этой плоскости, а значит и перпендикулярна и любой прямой лежащей в этой плоскости, в частности
АО перпендикулярна BD1.
Пряммая AA1 не лежащая в плосоксти BB1D паралельна двум прямым єтой плоскости (а именно BB1 и DD1 , следует из свойств прямоугольного параллелипипеда), поэтому она параллельна плоскости BB1D(содержащей пряммую BD1)
Далее пряммая АО перпендикулярна прямым AA1 и B1D. По определению расстояние от ребра AA1 до диагонали параллелепипеда BD1 это отрезок
АО
ABCD - квадрат со стороной равной а, поєтому
его диагональ равна AC=a*корень(2)
AO=1/2AC=1/2*a*корень(2)
ответ: a*корень(2)/2