1) если в четырехугольник можно вписать окружность, то сумма его противолежащих углов = 180 град. ∠Р и ∠Н являются противолежащими. получим, что ∠Н= 180- ∠Р= 180-120=60град.
2) проведем высоту КА. рассмотрим ΔКАН:
а) треуг прямоуг, тк ∠А= 90 град( высота)
б) по тригонометрическим формулам в прямоуг. треуг. катет= гипотенуза* cos прилежащего угла. АН= 6*cos 60= 6*1\2=3см
б) по теореме катет, лежащий против угла в 30 град, равен половине гипотенузы. получим, что МК= 3√3*2=6√3см
4) залезем в ΔМКН .мы можем сказать, что этот треуг вписан в окружность. если мы применим теорему синусов в этом треуг, по найдем радиус. итак, теорема синусов: 2R=а\sinА, где а- сторона треуг, а ∠а- противолежащий угол для этой стороны. 2R=МК\sin 60=6√3: √3\2=6√3*2\√3=12. 2R=12. тогда R= 12\2=6см
Через О проводим диаметр МН и перпендикулярно к нему радиус ОС, (как строить срединный перпендикуляр - ниже) .
Соединим С и Н отрезком и разделим его пополам:
Для этого из т.С и Н чертим полуокружности (можно тем же радиусом, что и первая) так, чтобы они пересеклись по обе стороны от СН.
Точки пересечения полуокружностей соединим прямой, которая пройдет через О, т.к. ∆ НОС - равнобедренный, а срединный перпендикуляр равнобедренного треугольника - биссектриса. Точку пересечения с окружностью обозначим А. Угол СОА=45°.
Ставим ножку циркуля в т. С ( или А - не имеет значения) и раствором циркуля, равным радиусу первой окружности, делаем на ней насечку. Отмечаем т.В. ∆ ВОС - правильный, так как ВО=СО=ВС=R. ⇒
1) если в четырехугольник можно вписать окружность, то сумма его противолежащих углов = 180 град. ∠Р и ∠Н являются противолежащими. получим, что ∠Н= 180- ∠Р= 180-120=60град.
2) проведем высоту КА. рассмотрим ΔКАН:
а) треуг прямоуг, тк ∠А= 90 град( высота)
б) по тригонометрическим формулам в прямоуг. треуг. катет= гипотенуза* cos прилежащего угла. АН= 6*cos 60= 6*1\2=3см
в) по тригонометрическим формулам КА= 6*sin противолежащего угла= 6*sin 60=6*√3\2= 3√3см
3) рассмотрим ΔМКА
а) треуг прямоуг (высота)
б) по теореме катет, лежащий против угла в 30 град, равен половине гипотенузы. получим, что МК= 3√3*2=6√3см
4) залезем в ΔМКН .мы можем сказать, что этот треуг вписан в окружность. если мы применим теорему синусов в этом треуг, по найдем радиус. итак, теорема синусов: 2R=а\sinА, где а- сторона треуг, а ∠а- противолежащий угол для этой стороны. 2R=МК\sin 60=6√3: √3\2=6√3*2\√3=12. 2R=12. тогда R= 12\2=6см
ответ:6
Чертим окружность с центром О.
Через О проводим диаметр МН и перпендикулярно к нему радиус ОС, (как строить срединный перпендикуляр - ниже) .
Соединим С и Н отрезком и разделим его пополам:
Для этого из т.С и Н чертим полуокружности (можно тем же радиусом, что и первая) так, чтобы они пересеклись по обе стороны от СН.
Точки пересечения полуокружностей соединим прямой, которая пройдет через О, т.к. ∆ НОС - равнобедренный, а срединный перпендикуляр равнобедренного треугольника - биссектриса. Точку пересечения с окружностью обозначим А. Угол СОА=45°.
Ставим ножку циркуля в т. С ( или А - не имеет значения) и раствором циркуля, равным радиусу первой окружности, делаем на ней насечку. Отмечаем т.В. ∆ ВОС - правильный, так как ВО=СО=ВС=R. ⇒
Угол ВОС=60°.
Угол ВОА=60°+45°=105° Построение завершено.