а) Для начала вспомним, что такое гомотетия. Гомотетия - преобразование подобия. Это преобразование, в котором выделяются подобные фигуры.
Проведём прямые АС и BD до пересечения в точке Е. тр. ЕАВ подобен тр. ЕСD по двум углам: угол Е - общий ; угол ЕАВ = угол ECD - как соответственные углы при параллельных прямых AB и СD и секущей ЕС. Как видно, одна фигура переходит в другую фигуру, ей подобную.
Дополнительное построение необходимо для понимания проявления гомотетии.
б) Найдём коэффициент гомотетии. Он равен коэффициенту подобия треугольников ЕАВ и ЕCD: АВ = k • CD 2 = k • 6 k = 1/3 ИЛИ CD = k • AB 6 = k • 2 k = 3
Основное тригонометрическое тождество:
sin²α + cos²α = 1, откуда
sinα = √(1 - cos²α) или sinα = - √(1 - cos²α)
Знак синуса зависит от координатной четверти, в которой расположен угол.
Но в данной задаче, вероятно, речь идет об остром угле прямоугольного треугольника, поэтому будем рассматривать синус угла только положительный.
tgα = sinα / cosα
1. cosα = 5/13
sinα = √(1 - 25/169) = √(144/169) = 12/13
tgα = 12/13 : 5/13 = 12/5
2. cosα = 15/17
sinα = √(1 - 225/289) = √(64/289) = 8/17
tgα = 8/17 : 15/17 = 8/15
3. cosα = 0,6
sinα = √(1 - 0,36) = √(0,64 ) = 0,8
tgα = 0,8/0,6 = 8/6 = 4/3
Объяснение:
Гомотетия - преобразование подобия. Это преобразование, в котором выделяются подобные фигуры.
Проведём прямые АС и BD до пересечения в точке Е.
тр. ЕАВ подобен тр. ЕСD по двум углам:
угол Е - общий ;
угол ЕАВ = угол ECD - как соответственные углы при параллельных прямых AB и СD и секущей ЕС.
Как видно, одна фигура переходит в другую фигуру, ей подобную.
Дополнительное построение необходимо для понимания проявления гомотетии.
б) Найдём коэффициент гомотетии. Он равен коэффициенту подобия треугольников ЕАВ и ЕCD:
АВ = k • CD
2 = k • 6
k = 1/3
ИЛИ
CD = k • AB
6 = k • 2
k = 3
ОТВЕТ: а) будут ; б) 1/3 или 3.