Предположим, это треугольник ABC, в котором угол А тупой, а из угла В опущена высота на основание АС. Если продлить основание АС, то высота пересечется с продленным основанием в точке, которую назовем Н. Тогда по условию угол НВА=14 градусов, а угол НВС=38 градусов.Угол ВНС=90 градусов.АВС=НВС-НВА, следовательно, АВС=38-14=24 градуса.В прямоугольном треугольнике НВС сумма углов составляет 180 градусов. Следовательно, ВСА=ВСН=180-38-90=52 градусаВ треугольнике АВС сумма углов равна 180 градусов, следовательно, ВАС= 180-52-24=104 градуса. Фотография здесь не нужна. И так все понятно. Просто хорошенько прочитай.
Дана правильная четырехугольная пирамида SАВСД, длина бокового ребра которой равна L = 3 см, а стороны основания a = 2√3 см.
Проведём осевое сечение через 2 боковых ребра. В сечении равнобедренный треугольник АSС с боковыми сторонами L = 3 см и основанием - диагональ квадрата основания d = a√2 = (2√3)*√3 = 2√6 см. Высота Н пирамиды равна: Н = √(L² - (d/2)²) = √(9 - 6) = √3 см. Перпендикуляр из центра основания пирамиды на боковое ребро (пусть это ОК) - это высота треугольника ОSС, она равна (√3*√6)/3 = √2 см.
Искомый угол лежит в перпендикулярном сечении к боковому ребру. В сечении - треугольник ВКД. Апофема А = √(3² - (2√3/2)²) = √(9 - 6) = √3 см. КД - высота, она равна 2S/L = (2*((1/2)*2√3*√6))/3 = 2√2 см. То есть она как гипотенуза треугольника ОКД в 2 раза больше катета ОК, а угол КДО равен 30 градусов. Отсюда искомый угол ВКД равен 2*60 = 120 градусов.
Проведём осевое сечение через 2 боковых ребра.
В сечении равнобедренный треугольник АSС с боковыми сторонами L = 3 см и основанием - диагональ квадрата основания d = a√2 = (2√3)*√3 = 2√6 см.
Высота Н пирамиды равна:
Н = √(L² - (d/2)²) = √(9 - 6) = √3 см.
Перпендикуляр из центра основания пирамиды на боковое ребро (пусть это ОК) - это высота треугольника ОSС, она равна (√3*√6)/3 = √2 см.
Искомый угол лежит в перпендикулярном сечении к боковому ребру.
В сечении - треугольник ВКД.
Апофема А = √(3² - (2√3/2)²) = √(9 - 6) = √3 см.
КД - высота, она равна 2S/L = (2*((1/2)*2√3*√6))/3 = 2√2 см.
То есть она как гипотенуза треугольника ОКД в 2 раза больше катета ОК, а угол КДО равен 30 градусов.
Отсюда искомый угол ВКД равен 2*60 = 120 градусов.