Найдите координаты точек, в которые переходят точки А (0; 1; 2), В (3; -1; 4), С (1; 0; -2) при: а) центральной симметрии относительно начала координат; б) осевой симметрии относительно координатных осей; в) зеркальной симметрии относительно координатных плоскостей.
2. Докажите, что при центральной симметрии:
а) прямая, не проходящая через центр симметрии, отображается на параллельную ей прямую;
б) прямая, проходящая через центр симметрии, отображается на себя.
3. В правую или левую перчатку переходит правая перчатка при зеркальной симметрии? осевой симметрии? центральной симметрии?
4. Изобразить проекцию на плоскость α: треугольника, прямоугольника, трапеции, отрезка.
5. Перечислите свойства параллельного проектирования.
1) Рассмотрим треугольник BAC. В нём M-середина BA и N - середина BC=> MN- средняя линия треугольника BAC(по свойству средней линии) MN || AC, MN=1/2AC
Аналогично, NP||CD и MP||AD => (MNP)||(ADC)(т.к. плоскости параллельны, если две пересек. в них прямых взаимно ||)
ч.т.д
б) Т.к. MN, NP, MP - средние линий соответственных ▲, то MN=1/2AC, NP=1/2CD, MP=1/2AD => ▲MNP подобен ▲ADC
А отношение площадей подобных ▲ равно квадрату коэффициенту подобия.
S1:S2=k^2
S2=S1:k^2
S2=48:2^2=12см^2
ответ:12 см^2
пусть х - сторона одного из пяти квадратов, на которые разбит двор. Тогда:
12х = 5400 (по формуле периметра)
х = 5400÷12 = 450 см
Отсюда площадь двора равна:
S = 5х² = (450)² × 5 = 1012500 см² = 101,25 м²
ответ: 101,25 м²
Объяснение:
Так как периметр - это сумма всех сторон фигуры, то мы имеем право разбить все стороны двора на равные отрезки (на стороны одного из пяти квадратов) и посчитать их количество. Здесь их получается 12, а чтобы не складывать 12 раз одно и то же число друг с другом, мы записываем это как умножение длины отрезков (х) на их количество (12).
5х² - это сумма площадей всех 5 квадратов, из которых состоит двор, то есть площадь целого двора. Так как площадь квадрата (S) равна квадрату его стороны (х²), то нам остаётся умножить эту площадь на количество равных квадратов (5) и получить площадь всего двора. Надеюсь всё понятно объяснил :)