Сделаем рисунок. Рассмотрим треугольник NOK Это равнобедренный прямоугольный треугольник ( NO=KO=R=12 см) Его углы при основании NK равны по 45° NK=OK:sin (45°)=12:{(√2):2}=24:√2=24*√2):(√2*√2)=12√2 см ( полезно помнить, что гипотеуза равнобедренного прямоугольного треугольника всегда равна катету, умноженному на √2)
MN можно найти по т. косинусов. Но можно обойтись и без нее. Разделим равнобедренный треугольник MON ( его боковые стороны - два радиуса) высотой к основанию MN на два равных прямоугольных треугольника и найдем половину MN. 0,5 MN=NO*cos (30°)=(12*√3):2=6√3 см MN=2*6√3=12√3 см
Дано: АВСD - параллелограмм, АС=ВD
Доказать: АВСD - прямоугольник.
Доказательство: В параллелограмме диагонали точкой пересечения делятся пополам. Т.к. диагонали равны, то ВО=ОС=АО=ОD (смотри рисунок).
ΔАВО и ΔОСD равнобедренные.
АВ=СD, ВО=ОС, АО=ОD ⇒ ΔАВО = ΔОСD (по трем сторонам)
Значит ∠ОВА=∠ВАО=∠ОСD=∠CDО=α.
ΔВОС и ΔАОD равнобедренные
ВС=АD, ВО=ОА, СО=OD ⇒ ΔВОС = ΔАОD (по трем сторонам)
Значит ∠CBO=∠BCO=∠OAD=ODA=β
∠СВА=α+β
∠ВАD=α+β
∠АDС=α+β
∠DСВ=α+β
В четырехугольнике сумма всех углов 360°.
∠СВА+∠ВАD+∠АDС+∠DСВ=(α+β)+(α+β)+(α+β)+(α+β)=4(α+β)=360°
4(α+β)=360°
α+β=360°:4
α+β=90°
∠СВА=α+β=90°
∠ВАD=α+β=90°
∠АDС=α+β=90°
∠DСВ=α+β=90°
Все углы в параллелограмме АВСD прямые, следовательноа АВСD – прямоугольник.
Рассмотрим треугольник NOK
Это равнобедренный прямоугольный треугольник ( NO=KO=R=12 см)
Его углы при основании NK равны по 45°
NK=OK:sin (45°)=12:{(√2):2}=24:√2=24*√2):(√2*√2)=12√2 см
( полезно помнить, что гипотеуза равнобедренного прямоугольного треугольника всегда равна катету, умноженному на √2)
MN можно найти по т. косинусов. Но можно обойтись и без нее.
Разделим равнобедренный треугольник MON ( его боковые стороны - два радиуса) высотой к основанию MN на два равных прямоугольных треугольника и найдем половину MN.
0,5 MN=NO*cos (30°)=(12*√3):2=6√3 см
MN=2*6√3=12√3 см