Нет, ни шестиугольник, ни семиугольник не могут быть гранями правильного многогранника . ими могут быть правильные треугольники, квадраты, либо пятиугольники. других вариантов нет дело в том, что угол правильного n-угольника ( n≥6 ) меньше 120° но при каждой вершине должно быть не меньше 3 плоских углов и если бы такой правильный многогранник при n≥6 существовал, то сумма плоских углов при каждой вершине была ≥3•120°=360° но этого не может быть, потому как сумма всех плоских углов выпуклого многогранника при каждой вершине < 360°
Решение:Плоскости a и b параллельны (по условию) Проведем плоскость через 3 точки P, B1, B2 (назовем ее плоскость с)- эта плоскость пересекает две параллельные плоскости. Плоскость с пересекает плоскость a по прямой A1A2. Плоскость с пересекает плоскость b по прямой B1B2. Так как a||b, то и A1A2||B1B2.
Отсюда следует что треугольники PA1A2 и PB1B2 подобны (по трем углам (угол Р - общий, а углы PA1A2 и PB1B2, PA2A1 и PB2B1 равны как соответствующие углы при параллельных прямых))
Проведем плоскость через 3 точки P, B1, B2 (назовем ее плоскость с)- эта плоскость пересекает две параллельные плоскости.
Плоскость с пересекает плоскость a по прямой A1A2.
Плоскость с пересекает плоскость b по прямой B1B2.
Так как a||b, то и A1A2||B1B2.
Отсюда следует что треугольники PA1A2 и PB1B2 подобны (по трем углам (угол Р - общий, а углы PA1A2 и PB1B2, PA2A1 и PB2B1 равны как соответствующие углы при параллельных прямых))
РА1 : PВ1 = 2:5
РА1 : PВ1=A1A2 : B1B2
2:5=10:B1B2
2B1B2=50
B1B2=25