CD=1/2 * √(2*(AC*AC+BC*BC)-AB*AB) Рассмотрим треугольник COF он прямоугольный, т. к. по условию медианы пересекаются под прямым углом. По свойству медиан, они пересекаясь делятся в состношении 2:1, следовательно: CO=2/3 * CDOF=1/3 * AF По теореме Пифагора CF*CF=OF*OF+CO*CO Подставив все вышеперечисленные формулы в теорему Пифагора и приведя подобные слагаемые найдем, что АС=9,2 см. Далее для нахождения площади воспользуемся формулой с полупериодом р=11,6 см
Все ребра правильной треугольной призмы АВСА1В1С1 равны между собой. Вычислите площадь сечения плоскостью, содержащей точку С и прямую А1В1, если площадь боковой поверхности треугольной пирамиды СС1АВ равна √3+4.
-----------
Поскольку призма правильная и все её ребра равны, то ее боковые грани - квадраты.
Сделаем рисунок.
S бок. пирамиды СС1АВ равно сумме площадей двух равных граней - равнобедренных прямоугольных треугольников АСС1и ВСС1 и наклонной грани- равнобедренного треугольника АС1В.
РЕШЕНИЕ
AF=1/2 * √(2*(AB*AB+AC*AC)-BC*BC)
CD=1/2 * √(2*(AC*AC+BC*BC)-AB*AB)
Рассмотрим треугольник COF он прямоугольный, т. к. по условию медианы пересекаются под прямым углом.
По свойству медиан, они пересекаясь делятся в состношении 2:1, следовательно:
CO=2/3 * CDOF=1/3 * AF
По теореме Пифагора CF*CF=OF*OF+CO*CO
Подставив все вышеперечисленные формулы в теорему Пифагора и приведя подобные слагаемые найдем, что АС=9,2 см.
Далее для нахождения площади воспользуемся формулой с полупериодом р=11,6 см
Все ребра правильной треугольной призмы АВСА1В1С1 равны между собой. Вычислите площадь сечения плоскостью, содержащей точку С и прямую А1В1, если площадь боковой поверхности треугольной пирамиды СС1АВ равна √3+4.
-----------
Поскольку призма правильная и все её ребра равны, то ее боковые грани - квадраты.
Сделаем рисунок.
S бок. пирамиды СС1АВ равно сумме площадей двух равных граней - равнобедренных прямоугольных треугольников АСС1и ВСС1 и наклонной грани- равнобедренного треугольника АС1В.
Пусть ребро призмы равно а.
S ACC1=S BCC1= а²:2
S AC1B=AB•C1H:2
АС1- диагональ квадрата и равна a√2
АН=ВН=а/2
Из ∆ АС1Н по т.Пифагора найдем С1Н.
С1Н²=АС1²-АН²=2а²-а²/4=7а²/4
С1Н=(a√7):2
S AC1B=a√7/2)•a/2=(a²√7):4
Sбок пирамиды=2•(а²:2)+a²√7/4= (4а²+а²√7):4=a²(4+√7):4
По условию a²(√7+4):4= √3+4
а² =4•(√3+4):(√7+4)
S A1CB1=S AC1B=(a²√7):4
Подставим значение а² в выражение S A1CB1=(a²√7):4
S A1CB1=[4•(√3+4):(√7+4)]•(√7):4
S A1CB1=√7•(√3+4):(√7+4) (ед. площади)