Расстоянием от точки до прямой называется длина кратчайшего перпендикуляра. таким образом, необходимо опустить перпендикуляр из точки с на прямую sa. для этого достроим равнобедренный треугольник sca и перпендикуляр сk, при чем k лежит на самой стороне sa, так как угол sca острый. обозначим ck за х. тогда по т. пифагора: х^2+sk^2=sc^2 x^2+ak^2=ac^2. отсюда приравняем: sc^2-sk^2=ac^2-ak^2. 4-sk^2=sqrt2(диагональ через 1 вершину в правильном шестиугольнике в sqrt2 раза больше стороны, т.е. ac=ab*sqrt2=-sk)^2. 4-sk^2=sqrt2-(4-4sk+sk^2). 4-sk^2=sqrt2-4+4sk-sk^2. 4=sqrt2-4+4sk. 4sk=8-sqrt2. sk=2-(sqrt2)/4. kc^2=sc^2-sk^2=4-(4-sqrt2+1/8)=sqrt2-1/8. kc=sqrt(sqrt2-1/8).
1) Сонаправленные (также колинеарные)
2) Противоположно направленные (также колинеарны)
3) Равные (также они соноправлены и колинеарны)
Объяснение:
• Коллинеарные векторы - это ненулевые векторы, которые лежат либо на одной прямой, либо на параллельных прямых.
• Сонаправленные векторы - это коллинеарные ненулевые векторы, которые одинаково направлены (в одну сторону).
• Противоположно направленные векторы - это коллинеарные ненулевые векторы, которые направлены в противоположную сторону.
• Равные векторы - это сонаправленные векторы, с равными длинами.
• Нулевой вектор - это вектор у которого начало и конец совпадают (он обозначается точкой).
• Неколинерные векторы - это ненулевые векторы, которые НЕ лежат на одной прямой, либо НЕ лежат на параллельных прямых.