Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Показать больше
Показать меньше
DestroyMe
29.12.2021 02:26 •
Геометрия
Найдите косинус угла между векторами (0; -6) и
Показать ответ
Ответ:
камка7
12.01.2023 07:31
В треугольнике АВС угол С = 90 градусов, угол А = 60 градусов, ВС = 8 корень из 3. Найдите АВ.
угол С = 90 градусов, треугольник АВС - прямоугольный
AB = BC/sinA = 8√3 / sin60 = 8√3 / √3/2 = 16
В треугольнике АВС угол С = 90 градусов, угол А = 30 градусов, АВ = 36 корень из 3. Найти высоту СН.
угол С = 90 градусов, треугольник АВС - прямоугольный
BC = AB*sinA = 36√3 *sin30 = 36√3 * 1/2 = 18√3
<B = 90 - <A = 60 Град
CH = BC *sinB = 18√3 *sin60 = 18√3 * √3/2 = 27
В треугольнике АВС угол С = 90 градусов, угол А = 30 градусов, АВ = 40 корень из 3. Найти высоту СН.
угол С = 90 градусов, треугольник АВС - прямоугольный
BC = AB*sinA = 40√3 *sin30 = 40√3 * 1/2 = 20√3
<B = 90 - <A = 60 Град
CH = BC *sinB = 20√3 *sin60 = 20√3 * √3/2 = 30
В треугольнике АВС угол С = 90 градусов, угол А = 30 градусов, АВ = 88 корень из 3. Найти высоту СН.
угол С = 90 градусов, треугольник АВС - прямоугольный
BC = AB*sinA = 88√3 *sin30 = 88√3 * 1/2 = 44√3
<B = 90 - <A = 60 Град
CH = BC *sinB = 44√3 *sin60 = 44√3 * √3/2 = 66
В треугольнике АВС угол С = 90 градусов, угол А = 30 градусов, АВ = 52 корень из
3. Найти высоту СН.
угол С = 90 градусов, треугольник АВС - прямоугольный
BC = AB*sinA = 52√3 *sin30 = 52√3 * 1/2 = 26√3
<B = 90 - <A = 60 Град
CH = BC *sinB = 26√3 *sin60 = 26√3 * √3/2 = 39
0,0
(0 оценок)
Ответ:
Glek11
11.03.2022 17:55
a=BC, b=AC, c=AB Пусть биссектриса BD=x, а ∠ADB=α
по теореме косинусов a²=b²+c²-2bccosA cosA=(b²+c²-a²)/2bc=804/924=67/77
sin²A=1-cos²A=1440/77²=36*40/77² sinA=4*√40/77
b²=a²+c²-2accosB cosB=(a²+c²-b²)/2ac=164/484=41/121 cosB=cos2*(B/2)
=cos²B/2-sin²B/2=1-2sin²(B/2) sin²B/2=(1-cosB)/2=40/121 sin(B/2)=√40/11
по теореме синусов:
BD/sinA=c/sinα=AD/sin(B/2)
BD/sinC=a/sin(180-α)=DC/sinB/2
берем вторые равенства и складываем sin(180-α)=sinα
(с+a)/sinα=(AD+DC)/sin(B/2)=b/sin(B/2)
sinα=(c+a)*sin(B/2)/b=33*√40/11*21=√40/7
по теореме синусов
с/sinα=BD/sinA
BD=c*sinA/sinα=22*4*√40*7/(77*√40)=8
0,0
(0 оценок)
Популярные вопросы: Геометрия
nurik139
19.03.2022 16:00
Знайдiть площу рiвностороннього трикутника зi сиороною 24 см....
kravts222p08eoo
19.03.2022 16:00
Впрямоугольной трапеции диагональ перпендикулярна боковой стороне, острый угол которой равен 45. найдите отношение оснований...
Nqva
09.08.2022 16:24
Ч/з вершину а квадрата abcd проведена прямая ка, не лежащая в плоскости квадрата а) докажите, что ка и cd скрещивающиеся прямые б) найдите уголь м/у прямыми ka и cd, если...
Sa4eR
09.08.2022 16:24
Найдите угол между диагональю и стороной квадрата...
xKarishax
09.08.2022 16:24
Abcda1b1c1d1 – куб. периметр большей боковой грани призмы b1bca1adравен 8(1+√2) см. вычислите длину ребра куба?...
aryuna2003
04.04.2020 16:58
Диагональ куба=6 см. найдите: а)ребро куба; б)косинус угла между диагональю куба и плоскостью одной из его граней....
КириллАлек
04.04.2020 16:58
Гипотенуза прямоугольного треугольника равна 50 см, а sin одного из острых углов 0,5. найти катеты?...
pandatka4ewa
04.04.2020 16:58
Вравнобедренном треугольнике с периметром 56 см основаниеотносится к боковой стороне как 2 к 3 .найдите стороны треугольника....
kizaru28
04.04.2020 16:58
Из сплошного металлического шара радиусом r изготовили полый шар, толщина стенок которого 0,1r. каков его внешний радиус?...
FuzziBoy
04.04.2020 16:58
.(Длина общей гипотенузы двух равнобедренных прямоугольных треугольников 6 дм. если плоскости треугольников перпендикулярны, то найдите расстояние между вершинами их прямых...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
угол С = 90 градусов, треугольник АВС - прямоугольный
AB = BC/sinA = 8√3 / sin60 = 8√3 / √3/2 = 16
В треугольнике АВС угол С = 90 градусов, угол А = 30 градусов, АВ = 36 корень из 3. Найти высоту СН.
угол С = 90 градусов, треугольник АВС - прямоугольный
BC = AB*sinA = 36√3 *sin30 = 36√3 * 1/2 = 18√3
<B = 90 - <A = 60 Град
CH = BC *sinB = 18√3 *sin60 = 18√3 * √3/2 = 27
В треугольнике АВС угол С = 90 градусов, угол А = 30 градусов, АВ = 40 корень из 3. Найти высоту СН.
угол С = 90 градусов, треугольник АВС - прямоугольный
BC = AB*sinA = 40√3 *sin30 = 40√3 * 1/2 = 20√3
<B = 90 - <A = 60 Град
CH = BC *sinB = 20√3 *sin60 = 20√3 * √3/2 = 30
В треугольнике АВС угол С = 90 градусов, угол А = 30 градусов, АВ = 88 корень из 3. Найти высоту СН.
угол С = 90 градусов, треугольник АВС - прямоугольный
BC = AB*sinA = 88√3 *sin30 = 88√3 * 1/2 = 44√3
<B = 90 - <A = 60 Град
CH = BC *sinB = 44√3 *sin60 = 44√3 * √3/2 = 66
В треугольнике АВС угол С = 90 градусов, угол А = 30 градусов, АВ = 52 корень из
3. Найти высоту СН.
угол С = 90 градусов, треугольник АВС - прямоугольный
BC = AB*sinA = 52√3 *sin30 = 52√3 * 1/2 = 26√3
<B = 90 - <A = 60 Град
CH = BC *sinB = 26√3 *sin60 = 26√3 * √3/2 = 39
по теореме косинусов a²=b²+c²-2bccosA cosA=(b²+c²-a²)/2bc=804/924=67/77
sin²A=1-cos²A=1440/77²=36*40/77² sinA=4*√40/77
b²=a²+c²-2accosB cosB=(a²+c²-b²)/2ac=164/484=41/121 cosB=cos2*(B/2)
=cos²B/2-sin²B/2=1-2sin²(B/2) sin²B/2=(1-cosB)/2=40/121 sin(B/2)=√40/11
по теореме синусов:
BD/sinA=c/sinα=AD/sin(B/2)
BD/sinC=a/sin(180-α)=DC/sinB/2
берем вторые равенства и складываем sin(180-α)=sinα
(с+a)/sinα=(AD+DC)/sin(B/2)=b/sin(B/2)
sinα=(c+a)*sin(B/2)/b=33*√40/11*21=√40/7
по теореме синусов
с/sinα=BD/sinA
BD=c*sinA/sinα=22*4*√40*7/(77*√40)=8