Изобразим схематически условие задачи: АВ - первая сосна, CD - вторая сосна, AD - расстояние между ними.
Если считать, что сосны растут перпендикулярно земле, получаем прямоугольную трапецию с основаниями АВ и CD, в которой большая боковая сторона ВС - искомая величина.
Проведем СН - высоту трапеции. СН = АD = 20 м, как расстояния между параллельными прямыми, СН║AD как перпендикуляры к одной прямой, значит AHCD - прямоугольник, ⇒ АН = CD = 12 м
ВН = АВ - АН = 27 - 12 = 15 м
Из прямоугольного треугольника ВСН по теореме Пифагора: ВС² = ВН² + НС² = 15² + 20² = 225 + 400 = 625 ВС = 25 м
Сторона ромба равна 10 см, острый угол равен 30°. Найдите радиус вписанной в ромб окружности
Стороны ромба равны между собой и являются касательными к вписанной окружности, центром которой является точка пересечения диагоналей ромба. Диаметр этой окружности, проведенный в точки касания, перпендикулярен обеим сторонам ромба (свойство диаметра).
Высота ВН противолежит углу 30°⇒
ВН равна половине гипотенузы. ВН=АВ:2=5 см
КМ⊥ВС и АD; ВН ⊥BC и АD⇒ КМ║ВН и равны, как перпендикуляры между параллельными прямыми. ⇒
d=5 cм, r=2,5 см
----------
Полезно запомнить: Диаметр вписанной в ромб окружности равен его высоте.
АВ - первая сосна,
CD - вторая сосна,
AD - расстояние между ними.
Если считать, что сосны растут перпендикулярно земле, получаем прямоугольную трапецию с основаниями АВ и CD, в которой большая боковая сторона ВС - искомая величина.
Проведем СН - высоту трапеции.
СН = АD = 20 м, как расстояния между параллельными прямыми,
СН║AD как перпендикуляры к одной прямой, значит AHCD - прямоугольник, ⇒
АН = CD = 12 м
ВН = АВ - АН = 27 - 12 = 15 м
Из прямоугольного треугольника ВСН по теореме Пифагора:
ВС² = ВН² + НС² = 15² + 20² = 225 + 400 = 625
ВС = 25 м
Сторона ромба равна 10 см, острый угол равен 30°. Найдите радиус вписанной в ромб окружности
Стороны ромба равны между собой и являются касательными к вписанной окружности, центром которой является точка пересечения диагоналей ромба. Диаметр этой окружности, проведенный в точки касания, перпендикулярен обеим сторонам ромба (свойство диаметра).
Высота ВН противолежит углу 30°⇒
ВН равна половине гипотенузы. ВН=АВ:2=5 см
КМ⊥ВС и АD; ВН ⊥BC и АD⇒ КМ║ВН и равны, как перпендикуляры между параллельными прямыми. ⇒
d=5 cм, r=2,5 см
----------
Полезно запомнить: Диаметр вписанной в ромб окружности равен его высоте.