Соединим точки А1 и С, В1 и А, С1 и В. АА1, ВВ1 и СС1 являются медианами треугольников SΔСС1А1, SΔAA1В1, SΔВВ1С1 соответственно. По свойствам медианы, которая делит треугольник на два треугольника равной площади, имеем равенство площадей треугольников SΔAC1A1=SΔAA1C SΔBA1B1=SΔBB1A SΔCB1C1=SΔCC1B
В свою очередь ВС, АС, ВА являются медианами в треугольниках SΔAA1C, SΔBB1A, SΔCC1B соответственно, следовательно также делят эти треугольники на два треугольника с равными площадями. Отсюда площади каждого из этих треугольников равны 2. А площадь всего треугольника А1В1С1=2+2+2+1=9
АА1, ВВ1 и СС1 являются медианами треугольников SΔСС1А1, SΔAA1В1, SΔВВ1С1 соответственно.
По свойствам медианы, которая делит треугольник на два треугольника равной площади, имеем равенство площадей треугольников
SΔAC1A1=SΔAA1C SΔBA1B1=SΔBB1A SΔCB1C1=SΔCC1B
В свою очередь ВС, АС, ВА являются медианами в треугольниках SΔAA1C, SΔBB1A, SΔCC1B соответственно, следовательно также делят эти треугольники на два треугольника с равными площадями.
Отсюда площади каждого из этих треугольников равны 2.
А площадь всего треугольника А1В1С1=2+2+2+1=9
Медианы, проведенные к катетам прямоугольного треугольника, равны a и b. Найти гипотенузу треугольника.
Пусть данный треугольник АВС, угол С=90º,
а - медиана АА1 к ВС, b- медиана ВВ1 к АС.
В ∆ АСА1 катет СА1=0,5 ВС ⇒ по т.Пифагора:
а²=АС²+(0,5ВС)²=АС²+0,25 ВС²
В ∆ ВСВ1 катет СВ1=0,5 АС ⇒ по т.Пифагора:
b²=ВС²+(0,5 АС)²=ВС²+0,25 АС²
Сложим два уравнения
а²+b²=1,25 (АС²+ВС²)⇒
АС²+ВС²=(а²+b²):1,25 ⇒
АВ²=АС²+ВС²=(а²+b²):1,25
АВ=√[(а²+b²):1,25]=0,4√[5•(а²+b²)] или 2√[(а²+b²):5], что одно и то же.