Зная, что углу 2 * пи соответствует угол 360 градусов:
Ad = Ar * 180 / пи Где Ad — угол в градусах, Ar — угол в радианах.
Перевод градусов в радианы
Зная, что углу 360 градусов соответствует угол 2 * пи:
Ar = Ad * пи / 180 Где Ad — угол в градусах, Ar — угол в радианах.
ФОРМУЛЫ РАСЧЕТА ДЛИНЫ
Длина окружности
L = 2 * пи * R Где L — длина окружности, R — радиус окружности.
Длина дуги окружности
L = A * R Где L — длина дуги окружности, R — радиус окружности, A — центральный угол, выраженный в радианах. Так, для окружности, A = 2*пи (360 градусов) , получим L = 2*пи*R.
ФОРМУЛЫ РАСЧЕТА ПЛОЩАДИ
Площадь треугольника.
Формула Герона.
S = (p * (p-a) * (p-b) * (p-c) )^1/2. Где S — площадь треугольника, a, b, c — длины сторон, p=(a+b+c)/2 — полупериметр.
Площадь круга
S = пи * R² Где S — площадь круга, R — радиус круга.
Площадь сектора
S = (Ld * R)/2 = (A * R²)/2 Где S — площадь сектора, R — радиус круга, Ld — длина дуги.
Площадь поверхности шара (сферы)
S = 4 * пи * R² Где S — площадь поверхности шара, R — радиус шара.
Площадь боковой поверхности цилиндра
S = 2 * пи * R * H Где S — площадь боковой поверхности цилиндра, R — радиус основания цилиндра, H — высота цилиндра.
Площадь полной поверхности цилиндра
S = 2 * пи * R * H + 2 * пи * R² Где S — площадь боковой поверхности цилиндра, R — радиус основания цилиндра, H — высота цилиндра.
Площадь боковой поверхности конуса
S = пи * R * L Где S — площадь боковой поверхности конуса, R — радиус основания конуса, L — длина образующей конуса.
Площадь полной поверхности конуса
S = пи * R * L + пи * R² Где S — площадь полной поверхности конуса, R — радиус основания конуса, L — длина образующей конуса.
ФОРМУЛЫ РАСЧЕТА ОБЪЕМА
Объем шара
V = 4 / 3 * пи * R³ Где V — объем шара, R — радиус шара.
Объем цилиндра (прямого, круглого)
V = пи * R² *H Где V — объем цилиндра, R — радиус основания цилиндра, H — высота цилиндра.
Объем конуса (прямого, круглого)
V = 1/3 пи * R² * H Где V — объем конуса, R — радиус основания конуса, H -конуса
Вычитая из второго уравнения первое, получаем -2x+y -1=0; первоначальная система из двух уравнений равносильна системе из первого уравнения и полученного y=2x +1. Подставляя в первое уравнение вместо y выражение 2x +1, получаем квадратное уравнение относительно x:
x^2+(2x+1)^2=1; 5x^2+4x=0; x=0 (⇒y=1) или x= - 4/5 (⇒y=-3/5). Таким образом, официальный ответ оказался правильным.
Каким образом Вы получили свои числа я не понимаю. Но отсеять их просто. Надо подставить в оба уравнения, например, y= -1 и найти из каждого x. Если значения x окажутся разными, тогда y= -1 Вы отбросите. Аналогично поступите со вторым значением y. Доделаем для значения y= - 1 до конца. Из первого уравнения получаем x=0; из второго x^2-2x-2=0; очевидно, x=0 корнем этого уравнения не является. Вот мы y= -1 и забраковали. y=3/5 забракуйте сами
Зная, что углу 2 * пи соответствует угол 360 градусов:
Ad = Ar * 180 / пи
Где Ad — угол в градусах, Ar — угол в радианах.
Перевод градусов в радианы
Зная, что углу 360 градусов соответствует угол 2 * пи:
Ar = Ad * пи / 180
Где Ad — угол в градусах, Ar — угол в радианах.
ФОРМУЛЫ РАСЧЕТА ДЛИНЫ
Длина окружности
L = 2 * пи * R
Где L — длина окружности, R — радиус окружности.
Длина дуги окружности
L = A * R
Где L — длина дуги окружности, R — радиус окружности, A — центральный угол, выраженный в радианах.
Так, для окружности, A = 2*пи (360 градусов) , получим L = 2*пи*R.
ФОРМУЛЫ РАСЧЕТА ПЛОЩАДИ
Площадь треугольника.
Формула Герона.
S = (p * (p-a) * (p-b) * (p-c) )^1/2.
Где S — площадь треугольника, a, b, c — длины сторон,
p=(a+b+c)/2 — полупериметр.
Площадь круга
S = пи * R²
Где S — площадь круга, R — радиус круга.
Площадь сектора
S = (Ld * R)/2 = (A * R²)/2
Где S — площадь сектора, R — радиус круга, Ld — длина дуги.
Площадь поверхности шара (сферы)
S = 4 * пи * R²
Где S — площадь поверхности шара, R — радиус шара.
Площадь боковой поверхности цилиндра
S = 2 * пи * R * H
Где S — площадь боковой поверхности цилиндра, R — радиус основания цилиндра, H — высота цилиндра.
Площадь полной поверхности цилиндра
S = 2 * пи * R * H + 2 * пи * R²
Где S — площадь боковой поверхности цилиндра, R — радиус основания цилиндра, H — высота цилиндра.
Площадь боковой поверхности конуса
S = пи * R * L
Где S — площадь боковой поверхности конуса, R — радиус основания конуса, L — длина образующей конуса.
Площадь полной поверхности конуса
S = пи * R * L + пи * R²
Где S — площадь полной поверхности конуса, R — радиус основания конуса, L — длина образующей конуса.
ФОРМУЛЫ РАСЧЕТА ОБЪЕМА
Объем шара
V = 4 / 3 * пи * R³
Где V — объем шара, R — радиус шара.
Объем цилиндра (прямого, круглого)
V = пи * R² *H
Где V — объем цилиндра, R — радиус основания цилиндра, H — высота цилиндра.
Объем конуса (прямого, круглого)
V = 1/3 пи * R² * H
Где V — объем конуса, R — радиус основания конуса, H -конуса
x^2+(2x+1)^2=1; 5x^2+4x=0; x=0 (⇒y=1) или x= - 4/5 (⇒y=-3/5).
Таким образом, официальный ответ оказался правильным.
Каким образом Вы получили свои числа я не понимаю. Но отсеять их просто. Надо подставить в оба уравнения, например, y= -1 и найти из каждого x. Если значения x окажутся разными, тогда y= -1 Вы отбросите. Аналогично поступите со вторым значением y. Доделаем для значения y= - 1 до конца. Из первого уравнения получаем x=0; из второго
x^2-2x-2=0; очевидно, x=0 корнем этого уравнения не является. Вот мы y= -1 и забраковали. y=3/5 забракуйте сами