АВСД-трапеция равнобедренная проведем две высоты из вершин В и В высоты ВН1 и СН2 получаем прямоугольник ВСН1Н2 ВС=Н1Н2, отсюда следует, что 9-3=6 когда мы провели высоты они поделили нижнее основание на три части одна из которых Н1Н2, а две другие АН1 и ДН2, они равны. 6/2=3, АН1=ДН2=3 отсюда находим высоту: треугольники АВН1 и СДН2 прямоугольные равнобедренные так как углы при основании равны 45 градусов (вычисляем по теореме о сумме углов в треугольнике) и получаем, что ВН1=СН2=3 формула площади трапеции равна: S=1/2(a+b)*h, где а,в - основания трапеции, h-высота подставляем в формулу: S=1/2(9+3)*3=1/2*12*3=6*3=18 ответ: площадь трапеции равна 18
проведем две высоты из вершин В и В
высоты ВН1 и СН2
получаем прямоугольник ВСН1Н2
ВС=Н1Н2, отсюда следует, что 9-3=6
когда мы провели высоты они поделили нижнее основание на три части одна из которых Н1Н2, а две другие АН1 и ДН2, они равны. 6/2=3, АН1=ДН2=3
отсюда находим высоту: треугольники АВН1 и СДН2 прямоугольные равнобедренные так как углы при основании равны 45 градусов (вычисляем по теореме о сумме углов в треугольнике) и получаем, что ВН1=СН2=3
формула площади трапеции равна: S=1/2(a+b)*h, где а,в - основания трапеции, h-высота
подставляем в формулу: S=1/2(9+3)*3=1/2*12*3=6*3=18
ответ: площадь трапеции равна 18
Дано:
АBCD - равнобедренная трапеция;
АВ = СD (боковые стороны);
BC (основание) = 3;
AD (основание) = 9;
Угол DAB = углу ADC = 45°;
BH и СN - высоты АВСD.
Найти: S (ABCD).
1) Рассмотрим прямоугольник HBCN (т. к. BH и CN - высоты АВCD):
▪ВС=HN=3 см (по свойству противоположных сторон параллелограмма).
2) AH = DN = (AD - HN) : 2 = (9 см - 3 см) : 2 = 6 см : 2 = 3 см.
3) Угол АВС = углу BCD (т. к. ABCD - равнобедренная трапеция) = (360° (сумма всех углов четырёхугольника) - угол DAB - угол ADC) : 2 = (360° - 45° - 45°) : 2 = 270° : 2 = 135°.
4) Рассмотрим прямоугольный треугольник АВН (т. к. ВН - высота ABCD):
▪Угол АВН = угол АВС - угол СBH = 135° - 90° (т. к. ВН - высота ABCD) = 45° => угол DAB = углу АВН = 45° => АВН - равнобедренный треугольник с прямым углом Н => АВ = BH.
5) ...