Обозначим основание пирамиды как квадрат АВСД, центр пересечения диагоналей квадрата - т.О, вершина пирамиды - т.К, высота пирамиды - отрезок КО, высота из т.О на сторону АВ основания - отрезок ОМ.
Тогда угол, который образует боковая грань с плоскостью основания будет равен ∠КМО в прямоугольном ΔКМО с катетами ОМ и КО.
Катет КО = 11 см по условию задачи,
катет ОМ равен радиусу вписанной в квадрат основания окружности, поэтому равен половине стороны основания, т.е.
ОМ=22/2=11 см.
Т.к. оба катета равны, то получаем прямоугольный равнобедренный треугольник, с углами при гипотенузе ∠КМО=∠МКО=45°
45°
Объяснение:
Обозначим основание пирамиды как квадрат АВСД, центр пересечения диагоналей квадрата - т.О, вершина пирамиды - т.К, высота пирамиды - отрезок КО, высота из т.О на сторону АВ основания - отрезок ОМ.
Тогда угол, который образует боковая грань с плоскостью основания будет равен ∠КМО в прямоугольном ΔКМО с катетами ОМ и КО.
Катет КО = 11 см по условию задачи,
катет ОМ равен радиусу вписанной в квадрат основания окружности, поэтому равен половине стороны основания, т.е.
ОМ=22/2=11 см.
Т.к. оба катета равны, то получаем прямоугольный равнобедренный треугольник, с углами при гипотенузе ∠КМО=∠МКО=45°
АС1/С1В=1/1, ВА1/А1С=3/7, АВ1/В1С=1/3, S A1B1C1=S ABC - S AC1B1 - S C1BA1 - S A1CB1, обе части уравнения делим на S ABC
S A1B1C1 / S ABC = 1 - (S AC1B1/S ABC) - (S C1BA1/ S ABC) - (S A1CB1/S ABC)
S ABC=1/2*AB*AC*sinA, S AB1C1=1/2*AC1*AB1*sinA, AB=AC1+C1B=1+1=2, AC=AB1+B1C=1+3=4, S AB1C1/S ABC=(AC1*AB1)/(AB*AC)=(1*1)/(2*4)=1/8,
S ABC=1/2*AB*BC*sinB, S C1BA1=1/2*C1B*BA1*sinB, BC=BA1+A1C=3+7=10,
S C1BA1/S ABC=(C1B*BA1)/(AB*BC)=(1*3)/(2*10)=3/20,
S ABC=1/2*AC*BC*sinC, S A1CB1=1/2*A1C*B1C*sinC, S A1CB/S ABC=(A1C*B1C) / (AC*BC)=(7*3)/(4*10)=21/40,
S A1B1C1/S ABC=1-1/8-3/20-21/40=8/40=1/5, или S ABC/S A1B1C1=5/1