1) Основание прямой призмы – прямоугольный треугольник с гипотенузой 15см и катетом 12см. Найдите площадь боковой поверхности, если грань содержащая больший катет – квадрат. Решение. По Пифагору найдем второй катет основания призмы: √(15²-12²)=√(27*3)=9см. Следовательно, больший катет равен 12см и высота призмы равна 12см (так как боковая грань - квадрат 12х12 - дано). Площадь боковой поверхности призмы равна Sб=P*h, где Р - периметр, а h - высота призмы. Sб=36*12=432см².
2) Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2, и проходящей параллельно ребру АВ. Решение. Условие для однозначного решения не полное. Во-первых, не понятно условие "Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2". Проходящее - содержащее это ребро или пересекающее его? Раз сечение делит ребро в отношении 1:2, значит плоскость пересекает это ребро и делит его в отношении 1:2, но считая от какой вершины? Во вторых, таких сечений может быть бесконечное множество, так как плоскость, параллельная прямой АВ, может пересекать тетраэдр в любом направлении. Например, параллельно грани АВS (сечение MNP) или проходящее через точку Q на ребре AS (сечение MQDN). Причем линия пересечения грани АSB и плоскости сечения будет параллельна ребру АВ. Вывод: однозначного решения по задаче с таким условием нет.
Поскольку в задании сказано, что "Спустя один час, когда
первому из них оставалось 1 км до окончания первого круга, ему сообщили, что второй бегун первый круг 15 минут назад", значит 2-й бегун пробежал первый круг за время = 1 час - 15 минут = 45 минут
45 минут = 45/60 = 0,75 часа
Длина круга = скорость бегуна * время, которое потрачено на преодоление одного круга.
Поэтому Длина круга = скорость 1-го бегуна * время, которое потрачено на преодоление одного круга 1-м бегуном = (Х+5) * 0,75= 0,75Х + 3,75
Поскольку в задании сказано, что "Спустя один час, когда
первому из них оставалось 1 км до окончания первого круга..."
Значит Длина круга = скорость 2-го бегуна * время, которое потрачено 2-м бегуном + 1 км, который оставался до окончания первого круга= Х * 1 +1 = Х+1
Решение.
По Пифагору найдем второй катет основания призмы:
√(15²-12²)=√(27*3)=9см.
Следовательно, больший катет равен 12см и высота призмы равна 12см (так как боковая грань - квадрат 12х12 - дано).
Площадь боковой поверхности призмы равна Sб=P*h, где Р - периметр, а h - высота призмы.
Sб=36*12=432см².
2) Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2, и проходящей параллельно ребру АВ.
Решение.
Условие для однозначного решения не полное.
Во-первых, не понятно условие "Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2".
Проходящее - содержащее это ребро или пересекающее его?
Раз сечение делит ребро в отношении 1:2, значит плоскость пересекает это ребро и делит его в отношении 1:2, но считая от какой вершины?
Во вторых, таких сечений может быть бесконечное множество, так как плоскость, параллельная прямой АВ, может пересекать тетраэдр в любом направлении. Например, параллельно грани АВS (сечение MNP) или проходящее через точку Q на ребре AS (сечение MQDN).
Причем линия пересечения грани АSB и плоскости сечения будет параллельна ребру АВ.
Вывод: однозначного решения по задаче с таким условием нет.
Допусти, что скорость 1-го бегуна = Х км/ч,
тогда скорость 2-го бегуна = Х+5 км/ч
Поскольку в задании сказано, что "Спустя один час, когда
первому из них оставалось 1 км до окончания первого круга, ему сообщили, что второй бегун первый круг 15 минут назад", значит 2-й бегун пробежал первый круг за время = 1 час - 15 минут = 45 минут
45 минут = 45/60 = 0,75 часа
Длина круга = скорость бегуна * время, которое потрачено на преодоление одного круга.
Поэтому Длина круга = скорость 1-го бегуна * время, которое потрачено на преодоление одного круга 1-м бегуном = (Х+5) * 0,75= 0,75Х + 3,75
Поскольку в задании сказано, что "Спустя один час, когда
первому из них оставалось 1 км до окончания первого круга..."
Значит Длина круга = скорость 2-го бегуна * время, которое потрачено 2-м бегуном + 1 км, который оставался до окончания первого круга= Х * 1 +1 = Х+1
Поэтому сможем составить уравнение:
0,75Х + 3,75 = Х+1
Х-0,75Х = 3,75-1
0,25Х = 2,75
Х=2,75/0,25
Х=11 - это скорость 1-го бегуна
Тогда скорость 2-го бегуна = Х+5 = 11+5=16 км/ч
ответ: скорость 2-го бегуна = 16км/ч