№5 Угол СВТ = углу АТВ- накрест лежащие Угол СВТ = углу АВТ-ВТ - биссектриса угла АВС угол АТВ = углу АВТ- углы при основании треугольника АВТ треугольник АВТ - равнобедренный=> АТ=АВ=9см ТД=СД=9см АД = 9*2 = 18см (18+8):2=13 см ответ:средняя линия трапеции равна 13 см
№6 Пусть четырёхугольник ABCD.Пусть M, N, K, L соотв. середины его сторон AB, BC, CD и AD.Тогда в треугольнике ABC: MN является средней линией, значит, равна половине диагонали BC четырёхугольника.Аналогично доказываем, что NK=1/2 AC, KL=1/2 BC, LM=1/2 AC.Но так как AC=BC получаем, что MN=NK=KL=LM
№7 Если соединить середины сторон четырехугольника, у которого диагонали перпендикулярны, то получатся прямые, параллельные диагоналям четырехугольника, а значит они тоже пересекаются под прямым углом таким образом получаем прямоугольник.
Объяснение:
1)
фото чертежа прилагаю.
Проведём высоту ВК.
sin 30°=BK/BC
1/2=BK/12
BK=12/2=6 см .
S(ABCD)=BK*(AB+DC)/2=6*(6+16)/2=
=6*11=66 см² площадь трапеции.
ответ: 66см²
2)
∆АВС- равносторонний по условию.
АВ=ВС=АВ.
Формула нахождения периметра равностороннего треугольника
Р=3*АВ
АВ=Р/3=18/3=6 см сторона треугольника.
S=AH*BC/2=3*6/2=9 см². площадь треугольника
ответ: площадь треугольника равна 9см²
3)
1) 80:2=40см полупериметр прямоугольника (АВ+ВС)
2) пусть сторона АВ=2х см, тогда сторона ВС=6х. Составляем уравнение.
2х+6х=40
8х=40
х=40/8
х=5
АВ=2х, подставляем значение х.
2*5=10см сторона АВ.
ВС=6х, подставляем значение х.
6*5=30 см сторона ВС
S=AB*BC=10*30=300см² площадь прямоугольника АВСD
ответ: 300см²
Угол СВТ = углу АВТ-ВТ - биссектриса угла АВС
угол АТВ = углу АВТ- углы при основании треугольника АВТ
треугольник АВТ - равнобедренный=>
АТ=АВ=9см
ТД=СД=9см
АД = 9*2 = 18см
(18+8):2=13 см
ответ:средняя линия трапеции равна 13 см
№6 Пусть четырёхугольник ABCD.Пусть M, N, K, L соотв. середины его сторон AB, BC, CD и AD.Тогда в треугольнике ABC: MN является средней линией, значит, равна половине диагонали BC четырёхугольника.Аналогично доказываем, что NK=1/2 AC, KL=1/2 BC, LM=1/2 AC.Но так как AC=BC получаем, что MN=NK=KL=LM
№7 Если соединить середины сторон четырехугольника, у которого диагонали перпендикулярны, то получатся прямые, параллельные диагоналям четырехугольника, а значит они тоже пересекаются под прямым углом таким образом получаем прямоугольник.