В треугольнике АВО все углы равны по 60 градусов,т.к треугольник равносторониий угол АОВ является центральным углом и равен 60 градусам,а угол АСВ является вписанным,он равен половине соответствующего центрального угла и равен 30 градусовТ.к. треугольник ABC равносторонний, то все углы равны 60 градусов===>угол АOВ=60Т.к. угол АОВ центральный, то величина дуги АВ тоже равна 60.Угол АСВ вписанный, и опирается на дугу АВ. Т.к. он вписанный то угол будет равен половине величины дуги, тоесть уголАОВ=60/2=30 Или если просто из правила. Величина вписанного угла равна половине центрального угла опирающего на эту дугу. уголВСА=уголВОА/
1. По условию стороны первого треугольника равны 3,4мм, 4,7мм, 5мм.
Стороны второго треугольника равны
и 6,8см = 68 мм, 9,4см = 94 мм, 10см = 100 мм.
2. Проверим, будут ли стороны треугольников пропорциональны, учитывая, что большей стороне первого. треугольника соответствует большая сторона второго треугольника, а3,_3 меньшей - меньшая.
100/5 = 20;
94/4,7 = 940/47 = 20;
68/3,4 = 680/34 = 20.
Получил , что
100/5 = 94/4,7 = 68/3,4 .
Так три стороны первого треугольника пропорциональны соответственно трём сторонам второго треугольника, то такие треугольники подобны по третьему признаку подобия.
треугольники подобны.
Объяснение:
1. По условию стороны первого треугольника равны 3,4мм, 4,7мм, 5мм.
Стороны второго треугольника равны
и 6,8см = 68 мм, 9,4см = 94 мм, 10см = 100 мм.
2. Проверим, будут ли стороны треугольников пропорциональны, учитывая, что большей стороне первого. треугольника соответствует большая сторона второго треугольника, а3,_3 меньшей - меньшая.
100/5 = 20;
94/4,7 = 940/47 = 20;
68/3,4 = 680/34 = 20.
Получил , что
100/5 = 94/4,7 = 68/3,4 .
Так три стороны первого треугольника пропорциональны соответственно трём сторонам второго треугольника, то такие треугольники подобны по третьему признаку подобия.