Если площадь полной поверхности шара 4*пи*квадрат его радиуса по условию равна 41, то можем найти радиус этого шара.
Этот радиус совпадает с радиусом основания цилиндра.
Два найденных радиуса, сложенные вместе - высота цилиндра.
Итак, мы знаем радиус основания цилиндра и его высоту.
Теперь не составит труда найти площадь его полной поверхности.
Для этого к площади боковой поверхности 2*пи*радиус основания*высота
нужно прибавить сумму площадей его оснований:
пи*квадрат радиуса основания.
Обратите внимание на ошибку в условии: площадь полной поверхности шара задана без величины пи. Исправьтесь,
Если площадь полной поверхности шара 4*пи*квадрат его радиуса по условию равна 41, то можем найти радиус этого шара.
Этот радиус совпадает с радиусом основания цилиндра.
Два найденных радиуса, сложенные вместе - высота цилиндра.
Итак, мы знаем радиус основания цилиндра и его высоту.
Теперь не составит труда найти площадь его полной поверхности.
Для этого к площади боковой поверхности 2*пи*радиус основания*высота
нужно прибавить сумму площадей его оснований:
пи*квадрат радиуса основания.
Обратите внимание на ошибку в условии: площадь полной поверхности шара задана без величины пи. Исправьтесь,
р=0,5(9+10+17)=0,5·36=18.
S=√18·9·8·1=36 см².
R=(9·10·17)/4·36=1530/144=10,625 см
2)Проти найменьшої сторони трикутника лежить найменший кут. Застосуємо теорему косинусів
а=8 см, b=18 см, с=24 см, α- найменший кут.
а²=b²+с² - 2b·с·cosα$
64=324+576-2·18·24·cosα.
64=900-864·cosα,
896cosα=836,
cosα=836/896=0,9330; α≈21°.
3) см фото. ВК =h.АВ=8, ВС=26, АС=30.
Пусть АК=х; СК-60-х.
ΔАВК. ВК²=АВ²-АК²=64-х².
ΔВСК. ВК²=ВС²-СК²,
ВК²=676-900+60х-х².
64-х²=676-900+60х-х²,
60х=288,
х=4,8. АК=4,8.
ΔАВК. ВК²=64-4,8²=64-23,04=40,96.
ВК=√40,96=6,4 см.