Найдите объем шара, вписанного в пирамиду из задачи, которая расположена ниже. Желательно с рисунком Апофема правильной треугольной пирамиды равна 4 см, а двугранный угол при основании равен 60°. Найдите объём пирамиды.Правильная треугольная пирамида SABC
Двугранный угол ∠AKS = 60°
Апофема SK = 4 см
Высота SO правильной пирамиды опускается в центр окружности, вписанной в равносторонний ΔABC ⇒ r = ОК
ΔSOK прямоугольный : ∠SOK = 90°
r = OK = SK*cos 60° = 4*1/2 = 2 см
h = SO = SK*sin 60° = 4*√3/2 = 2√3 см
Если в равносторонний ΔABC вписана окружность с радиусом r=2 см, то сторона треугольника
a = CB = 2√3 r = 2√3 * 2 = 4√3 см
Площадь равностороннего треугольника
S = a²√3/4 = (4√3)²*√3/4 = 48*√3/4 = 12√3 см²
Объем пирамиды
V = 1/3 S h = 1/3*12√3 *2√3 = 24 см³
Пусть имеем искомый треугольник ABC, в котором AB=14, BC=22. Из вершины B проведем медиану BM, BM=12. Необходимо найти величину стороны AC.
Обозначим АС=2x, тогда AM=CM=x, т.к. M - середина AC ( BM - медиана). По свойству медианы, она делит треугольник на два равновеликих треугольника (треугольники, у которых равны площади). Поскольку BM - медиана в треугольнике ABC, то S(ABM)=S(CBM) по вышеописанному свойству.
1). По формуле площади треугольника Герона имеем:
S(ABM)=√p*(p-AB)*(p-BM)*(p-AM), где p - полупериметр треугольника ABM;
p=(AB+BM+AM)/2=(14+12+x)/2=7+6+0,5*x=13+0,5*x;
Тогда, S(ABM)=√(13+0,5*x)*(13+0,5*x-14)*(13+0,5*x-12)*(13+0,5*x-x)=√(13+0,5*x)*(0,5*x-1)*(0,5*x+1)*(13-0,5*x);
Используя формулу разности квадратов, можем привести к следующему виду:
S(ABM)=√(169-0,25*x²)*(0,25*x²-1);
2). Аналогично, S(CBM)=√p*(p-MB)*(p-MC)*(p-BC), где p - полупериметр треугольника CBM;
p=(MB+MC+BC)/2=(12+x+22)/2=6+11+0,5*x=17+0,5*x;
Тогда, S(CBM)=√(17+0,5*x)*(17+0,5*x-12)*(17+0,5*x-x)*(17+0,5*x-22)=√(17+0,5*x)*(0,5*x+5)*(17-0,5*x)*(0,5*x-5);
Используя формулу разности квадратов, можем привести к следующему виду:
S(CBM)=√(289-0,25*x²)*(0,25*x²-25);
3). Т.к. по вышедоказанному S(ABM)=S(CBM), то подставив полученные вычисления, получаем:
√(169-0,25*x²)*(0,25*x²-1)=√(289-0,25*x²)*(0,25*x²-25);
Возведем обе части в квадрат:
(169-0,25*x²)*(0,25*x²-1)=(289-0,25*x²)*(0,25*x²-25);
42,25*x²-0,0625*x²-169+0,25*x²=72,25*x²-0,0625*x²-7225+6,25x²;
42,5*x²-169=78,5x²-7225;
36*x²=7056;
x²=196;
x=±14, но так как x - это величина стороны, то (-14) - посторонний корень;
4). АС=2x=2*14=28, что и требовалось найти;
ответ: AC=28.
Пусть имеем искомый треугольник ABC, в котором AB=14, BC=22. Из вершины B проведем медиану BM, BM=12. Необходимо найти величину стороны AC.
Обозначим АС=2x, тогда AM=CM=x, т.к. M - середина AC ( BM - медиана). По свойству медианы, она делит треугольник на два равновеликих треугольника (треугольники, у которых равны площади). Поскольку BM - медиана в треугольнике ABC, то S(ABM)=S(CBM) по вышеописанному свойству.
1). По формуле площади треугольника Герона имеем:
S(ABM)=√p*(p-AB)*(p-BM)*(p-AM), где p - полупериметр треугольника ABM;
p=(AB+BM+AM)/2=(14+12+x)/2=7+6+0,5*x=13+0,5*x;
Тогда, S(ABM)=√(13+0,5*x)*(13+0,5*x-14)*(13+0,5*x-12)*(13+0,5*x-x)=√(13+0,5*x)*(0,5*x-1)*(0,5*x+1)*(13-0,5*x);
Используя формулу разности квадратов, можем привести к следующему виду:
S(ABM)=√(169-0,25*x²)*(0,25*x²-1);
2). Аналогично, S(CBM)=√p*(p-MB)*(p-MC)*(p-BC), где p - полупериметр треугольника CBM;
p=(MB+MC+BC)/2=(12+x+22)/2=6+11+0,5*x=17+0,5*x;
Тогда, S(CBM)=√(17+0,5*x)*(17+0,5*x-12)*(17+0,5*x-x)*(17+0,5*x-22)=√(17+0,5*x)*(0,5*x+5)*(17-0,5*x)*(0,5*x-5);
Используя формулу разности квадратов, можем привести к следующему виду:
S(CBM)=√(289-0,25*x²)*(0,25*x²-25);
3). Т.к. по вышедоказанному S(ABM)=S(CBM), то подставив полученные вычисления, получаем:
√(169-0,25*x²)*(0,25*x²-1)=√(289-0,25*x²)*(0,25*x²-25);
Возведем обе части в квадрат:
(169-0,25*x²)*(0,25*x²-1)=(289-0,25*x²)*(0,25*x²-25);
42,25*x²-0,0625*x²-169+0,25*x²=72,25*x²-0,0625*x²-7225+6,25x²;
42,5*x²-169=78,5x²-7225;
36*x²=7056;
x²=196;
x=±14, но так как x - это величина стороны, то (-14) - посторонний корень;
4). АС=2x=2*14=28, что и требовалось найти;
ответ: AC=28.