Нам дана окружность, значит известен ее центр. 1. Проведем прямую через центр О окружности и данную точку М на окружности. 2. Из точки М на прямой ОМ восстановим перпендикуляр к прямой ОМ. Для этого из точки М как из центра проводим дугу радиусом ОМ и в точке пересечения прямой и этой дуги ставим точку N. Из точек О и N радиусом ОN проводим две дуги и точки их пересечения обозначим А и В. Соединим точки пересечения прямой АВ, которая пройдет через точку М, так как ОМ=MN. эта прямая и есть искомая касательная к окружности в точке М, так как <OMA=<OMB=90° по построению, а касательная перпендикулярна радиусу в точке касания.
Объяснение:
1. a→=20⋅i→+13⋅j→? a→{20 ; 13 }. 2. b→=−25⋅j→+8⋅i→? b→{8 ; - 25}. 3. c→=−11⋅i→? c→{- 11 ; 0 }.
Для вектора на площині коефіцієнт перед одиничним вектором і→
осі Ох є першою координатою , а коефіцієнт перед одиничним вектором j→ осі Оу є другою координатою вектора :
а→ = а₁* i + a₂ * j , а→{ a₁ ; a₂ } .
Якщо якогось одиничного вектора немає в запису , тоді для нього
коефіцієнт дорівнює 0 .
1. Проведем прямую через центр О окружности и данную точку М на окружности.
2. Из точки М на прямой ОМ восстановим перпендикуляр к прямой ОМ.
Для этого из точки М как из центра проводим дугу радиусом ОМ и в точке пересечения прямой и этой дуги ставим точку N. Из точек О и N радиусом ОN проводим две дуги и точки их пересечения обозначим
А и В. Соединим точки пересечения прямой АВ, которая пройдет через точку М, так как ОМ=MN. эта прямая и есть искомая касательная к окружности в точке М, так как <OMA=<OMB=90° по построению, а касательная перпендикулярна радиусу в точке касания.