Рассмотрим один из треугоьников, полученных после проведения диагонали. он прямоугольный. синус меньшего угла равен отношению противолежащего катета г гипотенузе = корень из 3/2 . значит этот угол равен 60 гадусов, а значит другой равен 180-90-60=30 градусов. проведя вторую диагональ, мы получим два треугольника внутри него. Один из этих треугольников содержит меньший угол, образованный при пересечении двух диагоналей прямоугольника. Он будет равнобедренным (надеюсь, додумаешься почему), а значит его углы при основании равны. Основание этого треугольника содержит одну из сторон прямоугольника. меньший угол, образованный при пересечении диагоналей прямоугольника будет равен 180-30-30=60 градусов.
Рассмотрим один из треугоьников, полученных после проведения диагонали. он прямоугольный. синус меньшего угла равен отношению противолежащего катета г гипотенузе = корень из 3/2 . значит этот угол равен 60 гадусов, а значит другой равен 180-90-60=30 градусов. проведя вторую диагональ, мы получим два треугольника внутри него. Один из этих треугольников содержит меньший угол, образованный при пересечении двух диагоналей прямоугольника. Он будет равнобедренным (надеюсь, додумаешься почему), а значит его углы при основании равны. Основание этого треугольника содержит одну из сторон прямоугольника. меньший угол, образованный при пересечении диагоналей прямоугольника будет равен 180-30-30=60 градусов.
a+b = 15
---
d = √(a²+b²) = 14
√(a²+b²) = 14
a²+b² = 14²
a = 15-b
(15-b)² + b² = 14²
225 - 30b + b² + b² = 196
2b² - 30² + 29 = 0
b₁ = (30 - √(30² - 4*2*29))/4 = 15/2 - √668/4 = 15/2 - √167/2
b₂ = (30 + √(30² - 4*2*29))/4 = 15/2 + √668/4 = 15/2 + √167/2
a₁ = 15 - b₁ = 15 - 15/2 + √167/2 = 15/2 + √167/2
a₂ = 15 - b₂ = 15 - 15/2 - √167/2 = 15/2 - √167/2
Решение одно, просто а и в переставлены местами
S = a*b = (15/2 + √167/2)*(15/2 - √167/2) = 1/4*(15 + √167)*(15 - √167) = 1/4*(15² - 167) = 1/4*(225 - 167) = 1/4*58 = 29/2