Удивительно, но эта такая сложная по формулировке задача решается в одно действие. Угол между высотами, выходящими (например, тут полный произвол в обозначениях) из вершин углов A и B; равен 180 - С; Это можно просто сосчитать, как 180 - (90 - A) - (90 - B) = A + B = 180 - C; а можно просто заметить, что четырехугольник, образованный сторонами угла С и высотами (ну кусочками), выходящими из углов A и B, очевидно является вписанным (да даже еще проще - в нем два угла прямых). а можно просто заметить, что у угла С и угла между высотами СТОРОНЫ ПЕРПЕНДИКУЛЯРНЫ. :) Поэтому в обоих треугольниках напротив общей их стороны AB лежат углы, синусы которых равны. Поэтому (по теореме синусов) равны радиусы окружностей, описанных вокруг этих треугольников.
Пусть две стороны треугольника равны a и b, а медиана проведена к третьей стороне, которая равна с. Длина медианы пусть равна m. Тогда если продолжить медиану на ее длину, и достроить до параллелограмма, то верно неравенство треугольника: a+b>2m. Отсюда первое условие. Для второго, исходный треугольник разбит медианой на 2 треугольника. Для каждого из них неравенство треугольника можно записать так: m+c/2>a m+c/2>b Складывая эти неравенства и перенося с, получим 2m>a+b-c, что и требовалось.
Угол между высотами, выходящими (например, тут полный произвол в обозначениях) из вершин углов A и B; равен 180 - С;
Это можно просто сосчитать, как 180 - (90 - A) - (90 - B) = A + B = 180 - C;
а можно просто заметить, что четырехугольник, образованный сторонами угла С и высотами (ну кусочками), выходящими из углов A и B, очевидно является вписанным (да даже еще проще - в нем два угла прямых).
а можно просто заметить, что у угла С и угла между высотами СТОРОНЫ ПЕРПЕНДИКУЛЯРНЫ. :)
Поэтому в обоих треугольниках напротив общей их стороны AB лежат углы, синусы которых равны.
Поэтому (по теореме синусов) равны радиусы окружностей, описанных вокруг этих треугольников.
a+b>2m. Отсюда первое условие.
Для второго, исходный треугольник разбит медианой на 2 треугольника. Для каждого из них неравенство треугольника можно записать так:
m+c/2>a
m+c/2>b
Складывая эти неравенства и перенося с, получим 2m>a+b-c, что и требовалось.