Пусть АВ и CD - хорды, перпендикулярные друг к другу, пересекающиеся в точке Р. Точки M и N - середины хорд АВ и CD.
Проведём радиусы ОМ1 и ОN1 через эти точки M и N. Эти радиусы будут перпендикулярны хордам АВ и CD соответственно по свойству хорды и радиуса (ну или доказывается через равнобедренный треугольник с боковыми сторонами, равными радиусу и медианой, проведённой к основанию - она же будет высотой).
Значит <OMP=<ONP=90°, при этом <MPN=90° по условию. Значит в четырёхугольнике OMPN оставшийся 4й угол <MON также равен 90° => OMPN - прямоугольник. В прямоугольнике диагонали равны, значит OP=MN, чтд.
1) НВ=22,5
2)АН=60
1)Рассмотрим ΔАВС, ∠С=90°, ∠А=30°., АВ=90
По теореме о сумме острых углов прямоугольного треугольника
∠В=90-∠А=90°-30°=60°.
ВС-катет , лежащий против угла в 30°
ВС=1/2 АВ=45
Рассмотрим ΔВСН, где ∠Н=90°,∠В=60°, ВС=45
По теореме о сумме острых углов прямоугольного треугольника
∠ВНС=90-∠В=90°-60°=30°.
НВ-катет , лежащий против угла в 30°.
НВ=1/2 ВС=22,5
2) Рассмотрим ΔАВС, ∠С=90°, ∠А=30°, АВ=80
По теореме о сумме острых углов прямоугольного треугольника
∠В=90-∠А=90°-30°=60°.
ВС-катет , лежащий против угла в 30°
ВС=1/2 АВ=40
Рассмотрим ΔВСН, где ∠Н=90°,∠В=60°, ВС=40
По теореме о сумме острых углов прямоугольного треугольника
∠ВНС=90-∠В=90°-60°=30°.
НВ-катет , лежащий против угла в 30°.
НВ=1/2 ВС=20
АН=АВ-НВ=80-20=60
Объяснение:
Пусть АВ и CD - хорды, перпендикулярные друг к другу, пересекающиеся в точке Р. Точки M и N - середины хорд АВ и CD.
Проведём радиусы ОМ1 и ОN1 через эти точки M и N. Эти радиусы будут перпендикулярны хордам АВ и CD соответственно по свойству хорды и радиуса (ну или доказывается через равнобедренный треугольник с боковыми сторонами, равными радиусу и медианой, проведённой к основанию - она же будет высотой).
Значит <OMP=<ONP=90°, при этом <MPN=90° по условию. Значит в четырёхугольнике OMPN оставшийся 4й угол <MON также равен 90° => OMPN - прямоугольник. В прямоугольнике диагонали равны, значит OP=MN, чтд.