Рассмотрим треугольники ADC и ЕСВ AD=EB-по условию; Тк треугольник DCE-равнобедренный, следовательно DC=CE;
Тк треугольник DCE-равнобедренный следовательно углы СDE и СЕD-равные. Угол ADC+ угол СDE=180 градусов(по свойству смежных углов) Угол CEB+угол CED=180 градусов(по свойству смежных углов) Тк угол CDE=угл CED-по ранее доказанному, следовательно углы ADC и CEB-равные; Следовательно треугольники равны по двум сторонам и углу между ними(1 признак равенства треугольников) Из равенства треугольников следует равенство всех его элементов, следовательно АС=СВ, следовательно треугольник АВС-равнобедренный, по свойству равнобедренно треугольника
60;90;6;8
Объяснение:
AD=EB-по условию;
Тк треугольник DCE-равнобедренный, следовательно DC=CE;
Тк треугольник DCE-равнобедренный следовательно углы СDE и СЕD-равные. Угол ADC+ угол СDE=180 градусов(по свойству смежных углов)
Угол CEB+угол CED=180 градусов(по свойству смежных углов)
Тк угол CDE=угл CED-по ранее доказанному, следовательно углы ADC и CEB-равные;
Следовательно треугольники равны по двум сторонам и углу между ними(1 признак равенства треугольников)
Из равенства треугольников следует равенство всех его элементов, следовательно АС=СВ, следовательно треугольник АВС-равнобедренный, по свойству равнобедренно треугольника