Треугольники AOD и BOC подобны по свойству трапеции. Площади подобных треугольников относятся, как квадраты коэффициента их подобия 25:16=k² k=√(25:16)=5:4 Следовательно, основания трапеции относятся, как 5:4 Обозначим высоту ᐃ ВОС=h₁ высоту ᐃ АОD=h₂ S АОD=h₂·АD:2 S ВОС=h₁·ВС:2
Площадь трапеции равна произведению ее высоты на полусумму оснований:
Высота трапеции Н S ABCD=Н·(АD+ВС):2 Н=h₂+h₁ S ABCD =(h₁+h₂)·(АD+ВС):2= =h₁·АD+h₂·АD+h1·ВС+h₂·ВС
1) Применим свойство пропорции: произведение средних членов пропорции равно произведению крайних. h₂:h₁=5:4 4h₂=5h₁ h₂=5h₁/4 S AOD=h₂·АD:2=5h₁/4·АD:2 25=5h₁/4·АD:2 Умножим на два обе части уравнения 12,5=5h₁/4·АD 5h₁/4 =12,5:AD h₁:4=2,5:AD h₁·AD= 4·2,5 =10 см²
Т.к. площади боковых треугольников у трапеции равны равны, то h₂·ВС=10 см²
Проверим это: 2) h₂:h₁=5:4 5h₁=4h₂ h₁=4h₂/5 S ВОС=h₁·ВС:2=4h₂/5·ВС:2 16=4h₂/5·ВС:2 Умножим на два обе части уравнения 8=4h₂/5·ВС 4h₂:5=8:ВС 4h₂·ВС=8·5=40 h₂·ВС=40:4=10 см²
3) Подставим значения h₂·ВС и h₁·AD в уравнение площади трапеции
S ABCD=h₁·АD+25+16+h₂ВС=41+=h₁·АD+h₂·ВС = S ABCD=10+25+16+10= 61 см
Решение: 1) Рассмотри основание. Это квадрат АВСD, т.е АВ=ВС=СD=АD В нем диагональ АС= 2V2 см. В этом квадрате рассмотри треугольник АВС. Угол В=90 град., АВ=ВС, значит по теореме Пифагора: АС^2 = AB^2 + BC^2 = 2AB^2 => AB^2 = AC^2 / 2 = (2V2)^2 / 2 = 4 см^2 => AB = V4 = 2 см - сторона квадрата основания 2) Точка S равноудалена от каждой стороны квадрата. Это значит, что расстояния AS=BS=CS=DS и проекция точки S на основание АВСD будет находиться в центре квадрата АВСD в точке О. 3) Теперь рассмотри треугольник АОS. Угол АОS= 90 град. OS = 3 см АО = 1/2 AC = 1/2*(2V2) = V2 см По теореме Пифагора: AS=AO^2 + OS^2 = (V2)^2 + 3^2 = 2+9=11 см. 4) Расстояние от точки S до стороны АВ измеряется перпендикуляром SK, проведенным из точки S к стороне АВ. Точка К лежит на АВ и АК=КВ=AB/2=2/2=1 cм Для этого рассмотри еще один треугольник - ASB. В нем: SA=SB= 11 см АВ =2 см => SA^2 = AK^2 + SK^2 => SK^2 = SA^2 - AK^2 = 11^1 - 1^2 = 121-1=120 SK=V120=2V30 см
Очень подробно.
Треугольники AOD и BOC подобны по свойству трапеции.
Площади подобных треугольников относятся, как квадраты коэффициента их подобия
25:16=k²
k=√(25:16)=5:4
Следовательно, основания трапеции относятся, как 5:4
Обозначим
высоту ᐃ ВОС=h₁
высоту ᐃ АОD=h₂
S АОD=h₂·АD:2
S ВОС=h₁·ВС:2
Площадь трапеции равна произведению ее высоты на полусумму оснований:
Высота трапеции Н
S ABCD=Н·(АD+ВС):2
Н=h₂+h₁
S ABCD =(h₁+h₂)·(АD+ВС):2=
=h₁·АD+h₂·АD+h1·ВС+h₂·ВС
1)
Применим свойство пропорции: произведение средних членов пропорции равно произведению крайних.
h₂:h₁=5:4
4h₂=5h₁
h₂=5h₁/4
S AOD=h₂·АD:2=5h₁/4·АD:2
25=5h₁/4·АD:2 Умножим на два обе части уравнения
12,5=5h₁/4·АD
5h₁/4 =12,5:AD
h₁:4=2,5:AD
h₁·AD= 4·2,5 =10 см²
Т.к. площади боковых треугольников у трапеции равны равны, то h₂·ВС=10 см²
Проверим это:
2)
h₂:h₁=5:4
5h₁=4h₂
h₁=4h₂/5
S ВОС=h₁·ВС:2=4h₂/5·ВС:2
16=4h₂/5·ВС:2 Умножим на два обе части уравнения
8=4h₂/5·ВС
4h₂:5=8:ВС
4h₂·ВС=8·5=40
h₂·ВС=40:4=10 см²
3) Подставим значения h₂·ВС и h₁·AD в уравнение площади трапеции
S ABCD=h₁·АD+25+16+h₂ВС=41+=h₁·АD+h₂·ВС =
S ABCD=10+25+16+10= 61 см
Решение:
1) Рассмотри основание. Это квадрат АВСD, т.е АВ=ВС=СD=АD
В нем диагональ АС= 2V2 см.
В этом квадрате рассмотри треугольник АВС. Угол В=90 град., АВ=ВС, значит по теореме Пифагора:
АС^2 = AB^2 + BC^2 = 2AB^2 =>
AB^2 = AC^2 / 2 = (2V2)^2 / 2 = 4 см^2 =>
AB = V4 = 2 см - сторона квадрата основания
2) Точка S равноудалена от каждой стороны квадрата. Это значит, что расстояния AS=BS=CS=DS и проекция точки S на основание АВСD будет находиться в центре квадрата АВСD в точке О.
3) Теперь рассмотри треугольник АОS.
Угол АОS= 90 град.
OS = 3 см
АО = 1/2 AC = 1/2*(2V2) = V2 см
По теореме Пифагора:
AS=AO^2 + OS^2 = (V2)^2 + 3^2 = 2+9=11 см.
4) Расстояние от точки S до стороны АВ измеряется перпендикуляром SK, проведенным из точки S к стороне АВ. Точка К лежит на АВ и
АК=КВ=AB/2=2/2=1 cм
Для этого рассмотри еще один треугольник - ASB. В нем:
SA=SB= 11 см
АВ =2 см =>
SA^2 = AK^2 + SK^2 =>
SK^2 = SA^2 - AK^2 = 11^1 - 1^2 = 121-1=120
SK=V120=2V30 см