1) построим треугольник, нижний катет 3, боковой 4. Впишем окружность, проведем радиусы к катетам. Соединим вершину катета в 3 с центром окружности. Получатся два подобных треугольника: их катеты равны по радиусу, другие - неизвестны (будут равны), обозначим их за Х.
2) в пересчете получим, что нижний катет основного треугольника делится радиусом на 3-Х и Х, гипотенуза на Х и 5-Х (гипотенуза равна 5 - египетский треугольник), боковой катет - на 5-Х и 4-5+Х
3) составим уравнение Х-1=3-Х, откуда Х=2. подставим, получим, что у прямоугольника, образованного двумя радиусами к катетам основного треугольника и частями основных катетов, составляющих прямой угол, две соседние стороны образуют прямой угол + равны , значит это квадрат, значит радиус равен 1( стороны этого маленького треугольника равны 1)
В равнобедренном треугольнике две боковые стороны равны.
Если заданы две стороны равнобедренного треугольника 12 и 6, и нет пояснения, какая из сторон боковая, а какая сторона - основание, то возможны 2 варианта .
Если неизвестная сторона -боковая, то она может быть равна 6 . Тогда в треугольнике стороны равны 6, 6, 12 .
Но для таких длин сторон треугольника не выполняется неравенство треугольника: сумма двух сторон треугольника больше длины третьей стороны; 6+6=12, но (6+6) не больше 12. Не существует треугольника со сторонами 6, 6, 12.
Если неизвестная сторона -боковая, то она может быть равна 12 . Тогда в треугольнике стороны равны 12, 12, 6 .
Аналогично, если неизвестная сторона - основание, то оно может быть равна или 6, или 12. Тогда две боковые стороны равны в первом случае по 12, а во втором случае по 6 . То есть опять получаем два треугольника, один со сторонами 6, 12, 12 , а второй со сторонами 12, 6, 6 , который не существует .
ответ: сторона равнобедренного треугольника может быть равна 12 .
ответ: площадь равна пи (или просто п)
Объяснение:
1) построим треугольник, нижний катет 3, боковой 4. Впишем окружность, проведем радиусы к катетам. Соединим вершину катета в 3 с центром окружности. Получатся два подобных треугольника: их катеты равны по радиусу, другие - неизвестны (будут равны), обозначим их за Х.
2) в пересчете получим, что нижний катет основного треугольника делится радиусом на 3-Х и Х, гипотенуза на Х и 5-Х (гипотенуза равна 5 - египетский треугольник), боковой катет - на 5-Х и 4-5+Х
3) составим уравнение Х-1=3-Х, откуда Х=2. подставим, получим, что у прямоугольника, образованного двумя радиусами к катетам основного треугольника и частями основных катетов, составляющих прямой угол, две соседние стороны образуют прямой угол + равны , значит это квадрат, значит радиус равен 1( стороны этого маленького треугольника равны 1)
4) площадь окружности п*(r^2)=п*1=п
В равнобедренном треугольнике две боковые стороны равны.
Если заданы две стороны равнобедренного треугольника 12 и 6, и нет пояснения, какая из сторон боковая, а какая сторона - основание, то возможны 2 варианта .
Если неизвестная сторона -боковая, то она может быть равна 6 . Тогда в треугольнике стороны равны 6, 6, 12 .
Но для таких длин сторон треугольника не выполняется неравенство треугольника: сумма двух сторон треугольника больше длины третьей стороны; 6+6=12, но (6+6) не больше 12. Не существует треугольника со сторонами 6, 6, 12.
Если неизвестная сторона -боковая, то она может быть равна 12 . Тогда в треугольнике стороны равны 12, 12, 6 .
Неравенство треугольника выполняется: 12+12>6 , 12+6>12.
Аналогично, если неизвестная сторона - основание, то оно может быть равна или 6, или 12. Тогда две боковые стороны равны в первом случае по 12, а во втором случае по 6 . То есть опять получаем два треугольника, один со сторонами 6, 12, 12 , а второй со сторонами 12, 6, 6 , который не существует .
ответ: сторона равнобедренного треугольника может быть равна 12 .