Для того,чтобы найти угол abc,мы рассмотрим треугольник cbd.так как bd-биссектриса,то угол cdb=90 градусам.тогда угол abc=180-(угол cdb+угол c)=180-(90+25)=180-115=65 градусов. чтобы найти угол а,рассмотрим треугольник abd.угол abc=углу abd (как углы с биссектрисой).значит угол abd=65 градусов.угол bda=90 градусов (прямой).найдем угол а. угол а=180-(abd+bda)=180-(90+65)=180-155=25. если не знаете откуда я взяла 180 градусов ,то сейчас объясню.дело в том ,что сумма углов треугольника равна 180 градусов. ответ: угол а =25 градусов .угол abc=65 градусов .
Расстояние от точки S до каждой из вершин правильного треугольника АВС равно 5 см,а до плоскости 3 см. Найдите высоту треугольника ----------- Соединим вершины треугольника с точкой Ѕ АЅ=ВЅ=СЅ Если расстояние от точки вне треугольника до его вершин одинаково., то одинаковы проекции наклонных отрезков, соединяющих эту точку с вершинами: значит, вокруг треугольника можно описать окружность, и основание перпендикуляра к плоскости треугольника лежит в центре этой описанной окружности. По условию расстояние до плоскости треугольника 3 см АО=R Треугольник АОЅ- египетский, и АО=4 см( проверьте по т.Пифагора). Радиус описанной вокруг правильного треугольника окружности равен 2/3 его высоты. ⇒ Высота треугольника АН=4:(2/3)=6 см
-----------
Соединим вершины треугольника с точкой Ѕ
АЅ=ВЅ=СЅ
Если расстояние от точки вне треугольника до его вершин одинаково., то одинаковы проекции наклонных отрезков, соединяющих эту точку с вершинами: значит, вокруг треугольника можно описать окружность, и основание перпендикуляра к плоскости треугольника лежит в центре этой описанной окружности.
По условию расстояние до плоскости треугольника 3 см
АО=R
Треугольник АОЅ- египетский, и АО=4 см( проверьте по т.Пифагора).
Радиус описанной вокруг правильного треугольника окружности равен 2/3 его высоты. ⇒
Высота треугольника АН=4:(2/3)=6 см