Пирамида правильная, т. е. проекция вершины на основание совпадает с пересечением его диагоналей. В квадрате длина диагонали «сторона квадрата» множить на корень из 2-х (можно сослаться на теорему Пифагора – квадрат гипотенузы равен сумме квадратов катетов, поскольку треугольник имеет прямой угол). Диагональ квадрата – она же и основание треугольника в указанном сечении пирамиды. Угол (при учёте, что треугольник прямоугольный) вычисляется как арктангенс отношения противолежащего катета к прилежащему. Противолежащий – это высота из условия, а прилежащий – половина диагонали квадрата в основании. Если подставить все известные данные, то получается дробь: делимое - 5 корней из 6-ти, а делитель - 10 корней из 2-х делённое на 2. После «перекочёвки» 2-ки к 5-ке и сокращения остаётся корень из 6 делить на корень из 2-х или просто корень из 3-х. Арктангенс корня из 3-х ровно 60 градусов. Площадь сечения просто получается перемножением катетов того же треугольника (половинки сечения). 5 корней из 6 множить на 10 корней из 2-х делённых на 2. Всё легко сокращается до вида 50 корней из 3-х.
АВС - прямоугольный тр-ник, угол В прямой, АС - гипотенуза. ВМ - медиана.
Медиана делит сторону, к которой она проведена, пополам. Значит АМ = МС.
В прямоугольном тр-нике медиана, проведенная к гипотенузе, равна ее половине, т.е.
ВМ = ВМ = СМ = 10 см, тогда гипотенуза АС = 20 см.
Медиана ВМ делит прямой угол в отношении 1 : 2, значит
угол АВМ = 90 : 3 * 2 = 60 градусов
угол СВМ = 90 - 60 = 30 градусов.
Тр-ник АМВ - равнобедренный, поскольку АМ = ВМ, АВ - основание.
Углы при основании равны, т.е. угол МАВ = МВА = 60, тогда угол АМВ = 180 - 60 * 2 = 60.
Значит тр-ник АМВ равносторонний, АВ = 16 см.
Меньшая средняя линия параллельна меньшей стороне (АВ) и равна ее половине, т.е. 8 см.