1)треугольники alk=amn ( по 3 сторонам ak=an ( в равнобедренном треугольнике),al=am ( а- середина стороны), lm=mn ( противоположные стороны в параллелограмме это значит, что углы kla=nma, но в параллелограмме противоположные углы также равны, значит kla=nma=lkn=mnk. в параллелограмме сумма углов равна 360 градусов. из этого следует, что 360/4=90.
значит kla=nma=lkn=mnk=90 градусам, значит наш параллелограмм - прямоугольник.
2)
так как ромб - это симметричная фигура
следует, что относительно диагоналей ac и вd происходит симметрия =>
∆ abc = ∆ авсd
из первого пункта было сказано, что epkt является прямоугольником
значит, прямоугольник epkt симметрично накладывается на четырёхугольник meth, которые вследствие симметричности является также прямоугольником. а значит, весь четырехугольник мрkh является прямоугольником.
для точности докажем, что точки р и м, к и н симметричны относительно диагонали ас
∆ аре = ∆ аем - по катету и острому углу ( угол вас = угол саd - по свойству ромба ; ае - общая сторона )
1
1) δавс, ∟авс = 35 °, ∟асв = 83 °, вм и ск -
высоты, пересекаются в н. найходим внс.
2) δавс.
∟а = 180 ° - (∟abc + ∟асв),
∟а = 180 ° - (35 ° + 83 °) = 62 °.
3) δавм.
∟amb = 90 ° (вм - высота),
∟abm = 180 ° - (∟амв + ∟a), ∟abm = 28 °.
4) δквс.
∟вкс = 90 ° (ск - высота),
∟вск = 180 ° - (∟вкс + ∟квс),
∟вск = 55 °, ∟abc = 35 °,
∟abc = ∟abm + ∟mbc, 35 ° = 28 ° + ∟mbc, ∟mbc = 7 °.
5) δнвс.
∟нвс = 7 °, ∟bch = 55 °,
∟внс = 180 ° - (∟hbc + ∟всн),
∟внс = 180 ° - (7 ° + 55 °), ∟bhc = 180 ° - 62 ° = 118 °.
ответ 118
это точно все дано или было что-то еще?
1)треугольники alk=amn ( по 3 сторонам ak=an ( в равнобедренном треугольнике),al=am ( а- середина стороны), lm=mn ( противоположные стороны в параллелограмме это значит, что углы kla=nma, но в параллелограмме противоположные углы также равны, значит kla=nma=lkn=mnk. в параллелограмме сумма углов равна 360 градусов. из этого следует, что 360/4=90.
значит kla=nma=lkn=mnk=90 градусам, значит наш параллелограмм - прямоугольник.
2)
так как ромб - это симметричная фигура
следует, что относительно диагоналей ac и вd происходит симметрия =>
∆ abc = ∆ авсd
из первого пункта было сказано, что epkt является прямоугольником
значит, прямоугольник epkt симметрично накладывается на четырёхугольник meth, которые вследствие симметричности является также прямоугольником. а значит, весь четырехугольник мрkh является прямоугольником.
для точности докажем, что точки р и м, к и н симметричны относительно диагонали ас
∆ аре = ∆ аем - по катету и острому углу ( угол вас = угол саd - по свойству ромба ; ае - общая сторона )
значит, ав=сд