1) Биссектриса равностороннего треугольника совпадает с медианой и высотой.
Обозначим а - сторона,
h - высота. Равносторонний треугольник равны все стороны и равны углы, причем углы равны 60°.
Рассмотрим треугольник образованный стороной высотой (биссектрисой)
и третьей стороной будет часть стороны на которую опущен треугольник. Рассматриваемый треугольник прямоугольный. И углы соответсвенно равны 90° , 60° и 30°.
Справедливо: а=h/cos30°. a=58×2=116.
2) Величина угла ACB, равна половине угла AOB, который равен 124°. Угол ACB=(124°/2)=
1) 116
2) 62°
3) 416
1) Биссектриса равностороннего треугольника совпадает с медианой и высотой.
Обозначим а - сторона,
h - высота. Равносторонний треугольник равны все стороны и равны углы, причем углы равны 60°.
Рассмотрим треугольник образованный стороной высотой (биссектрисой)
и третьей стороной будет часть стороны на которую опущен треугольник. Рассматриваемый треугольник прямоугольный. И углы соответсвенно равны 90° , 60° и 30°.
Справедливо: а=h/cos30°. a=58×2=116.
2) Величина угла ACB, равна половине угла AOB, который равен 124°. Угол ACB=(124°/2)=
62°.
3)
BC=2×MC; AC=2×NC.
MC=(1/2)×BC; NC=(1/2)×AC
S(ABC)=1/2×AC×BC×sinC,
S(MNC)=1/2×MC×NC×sinC,
Отсюда S(ABC)=4×S(MNC)=4×104
S(ABC)=416
ответ: 28, 19,8
Объяснение:
1. Катет, лежащий напротив угла в 30 градусов равен половине гипотенузы. Следовательно, гипотенуза DE=DF*2=14*2=28 см
2. Угол А= 90- угол В=90-60=30. Катет, лежащий против угла в 30 градусов равен половине гипотенузы. ВС=38/2=19 см
3. ΔКРЕ: ∠Р = 90°, ∠К = 60°, ⇒ ∠Е = 30°.
ΔРКМ: ∠КРМ = 90°, ∠КМР = 60°, ⇒ ∠МКР = 30°.
∠PKM = 30°.
∠РКЕ = 60°,
∠EKM = ∠РКЕ - ∠1 = 60° - 30° = 30°.
Тогда треугольник КМЕ равнобедренный (∠PEK = ∠EKM = 30°),
КМ = МЕ = 16 см
В прямоугольном треугольнике РКМ напротив угла в 30° лежит катет, равный половине гипотенузы, т.е.
РМ = 1/2 КМ = 8 см