1)Треугольник АВД равнобедренный, т.к. стороны АД=АВ. Значит высота, проведенная из вершины А к основанию ВД, является еще и медианой и биссектрисой. В этом случае ВС=СД.
2)Рассмотрим один из получившихся прямоугольных треугольников, например, АВС. В треугольнике мы видим, что ГИПОТЕНУЗА В ДВА РАЗА БОЛЬШЕ КАТЕТА, А ЭТО ЗНАЧИТ,ЧТО УГОЛ,НАПРОТИВ ЭТОГО КАТЕТА РАВЕН 30 ГРАДУСОВ.(ВАС)
3)Так как треугольник прямоугольный найдём его третий угол АВС 180-30-90=60 ГРАДУСОВ.
4)Далее, вспоминаем, что АВД- РАВНОБЕДРЕННЫЙ треугольник и вспоминаем, что углы при его основании равны, значит, АВД=АДВ=60 ГРАДУСОВ.
5)И теперь находим угол ДАВ 180-60-60=60 ГРАДУСОВ. Треугольник равносторонний, все углы по 60 градусов.
ИЛИ
2)Т.к. ВС=СД, ТО ВД=ВС=СД=7
3)Так как все стороны 7, то треугольник равносторонний, и все его углы равны. (180/3=60 градусов)
Определения: Правильный октаэдр — многогранник, гранями которого являются восемь правильных треугольников.
Плоскости параллельны друг другу, если две пересекающиеся прямые, лежащие в одной плоскости, соответственно параллельны двум пересекающимся прямым, лежащим в другой плоскости.
Проведем секущую плоскость через противоположные вершины Е и F октаэдра и середины противоположных сторон G и H основания АВСD (квадрата). Эта плоскость пройдет через высоты EG, EH, FG и FH боковых граней ADE, BCE, ADF и BCF(правильные треугольники) соответственно. Они равны друг другу и лежат в одной плоскости, следовательно сечение FGEH - ромб по определению.
В ромбе противоположные стороны GE и FH параллельны. Параллельны и стороны основания октаэдра AD и ВС. Прямые AD и EG, BC и FH - пересекающиеся прямые. Они лежат в плоскостях ADE и BCF соответственно. Следовательно, плоскости ADE и BCF параллельны по приведенному выше определению. Аналогично и для других противоположных граней. Что и требовалось доказать.
60 градусов каждый угол треугольника АВД
Объяснение:
1)Треугольник АВД равнобедренный, т.к. стороны АД=АВ. Значит высота, проведенная из вершины А к основанию ВД, является еще и медианой и биссектрисой. В этом случае ВС=СД.
2)Рассмотрим один из получившихся прямоугольных треугольников, например, АВС. В треугольнике мы видим, что ГИПОТЕНУЗА В ДВА РАЗА БОЛЬШЕ КАТЕТА, А ЭТО ЗНАЧИТ,ЧТО УГОЛ,НАПРОТИВ ЭТОГО КАТЕТА РАВЕН 30 ГРАДУСОВ.(ВАС)
3)Так как треугольник прямоугольный найдём его третий угол АВС 180-30-90=60 ГРАДУСОВ.
4)Далее, вспоминаем, что АВД- РАВНОБЕДРЕННЫЙ треугольник и вспоминаем, что углы при его основании равны, значит, АВД=АДВ=60 ГРАДУСОВ.
5)И теперь находим угол ДАВ 180-60-60=60 ГРАДУСОВ. Треугольник равносторонний, все углы по 60 градусов.
ИЛИ
2)Т.к. ВС=СД, ТО ВД=ВС=СД=7
3)Так как все стороны 7, то треугольник равносторонний, и все его углы равны. (180/3=60 градусов)
Определения: Правильный октаэдр — многогранник, гранями которого являются восемь правильных треугольников.
Плоскости параллельны друг другу, если две пересекающиеся прямые, лежащие в одной плоскости, соответственно параллельны двум пересекающимся прямым, лежащим в другой плоскости.
Проведем секущую плоскость через противоположные вершины Е и F октаэдра и середины противоположных сторон G и H основания АВСD (квадрата). Эта плоскость пройдет через высоты EG, EH, FG и FH боковых граней ADE, BCE, ADF и BCF(правильные треугольники) соответственно. Они равны друг другу и лежат в одной плоскости, следовательно сечение FGEH - ромб по определению.
В ромбе противоположные стороны GE и FH параллельны. Параллельны и стороны основания октаэдра AD и ВС. Прямые AD и EG, BC и FH - пересекающиеся прямые. Они лежат в плоскостях ADE и BCF соответственно. Следовательно, плоскости ADE и BCF параллельны по приведенному выше определению. Аналогично и для других противоположных граней. Что и требовалось доказать.