У параллелограмма точка пересечения диагоналей делит их пополам ОВ=ОД,, АО=ОС
Так как у треугольника ВАС ОМ есть медиана и высота, то ВОС равнобедренный и ОВ=ОС
Таким образом АО=ОД=ОС=ОВ, если мы продлим ОМ до пересечения с АД, пусть будет точка Н( АН=НД), то МН перпендикулярна к ВС и АД, так как эти прямые паралельны
Но так как МН есть средней АВСД, то МН||АВ и МН||СД значит прямые ВА и ДС перпендикулярны как и МН сторонам ВС и АД. Таким образом боковые стороны перпендикулярна основам -> АВСД- прямоугольник
В ортонормированном базисе заданы векторы а=(2; -3;1) b=(-1;2;0). Найти вектор с, перпендикулярный векторам а и b, длина которого равна единице.
Находим вектор d, перпендикулярный двум заданным с векторного произведения.
I j k| I j
2 -3 1| 2 -3
-1 2 0| -1 2 = 0i – 1j + 4k – 0j – 2i – 3k = -2i – 1j + 1k.
Вектор d = (-2; -1; 1), его модуль равен √((-2)² + (-1)² + 1²) = √6.
Вектор «с» с единичной длиной получим из вектора d, разделив его на его же модуль.
c = ((-2/√6); (-1/√6); (1/√6)).
Відповідь:
Пояснення:
У параллелограмма точка пересечения диагоналей делит их пополам ОВ=ОД,, АО=ОС
Так как у треугольника ВАС ОМ есть медиана и высота, то ВОС равнобедренный и ОВ=ОС
Таким образом АО=ОД=ОС=ОВ, если мы продлим ОМ до пересечения с АД, пусть будет точка Н( АН=НД), то МН перпендикулярна к ВС и АД, так как эти прямые паралельны
Но так как МН есть средней АВСД, то МН||АВ и МН||СД значит прямые ВА и ДС перпендикулярны как и МН сторонам ВС и АД. Таким образом боковые стороны перпендикулярна основам -> АВСД- прямоугольник