Данные диагонали пересекаются в одной точке и составляют 4 прямоугольных угла. Можем найти их углы по определению синуса (отношение противолежащего катета к гипотенузе) и косинуса (отношение прилежащего катета к гипотенузе), а стороны (гипотенузы) по теореме Пифагора.
Известны катет a= 5 и катет b = 12
Найдем гипотенузу прямоугольного треугольника. Для этого воспользуемся формулой Пифагора:
В итоге, я узнала, что углы одного из четырех треугольников, на которые был разделен ромб, равны 90°;67,67°; 22,33°. Т.к. эти диагонали являлись также и биссектрисами, то мы умножим на 2 углы. Таким образом, у ромба 2 угла по 135,34° и 2 угла по 44,66°
о теореме пифогора можно найти половину диагонали основания(квадрата).
х-половина диагонали квадрата
х^2=15^2-12^2
x^2=225-144
x^2=81
x1=9 х2=-9--не удовлитворяет
значит х=9
находим диагональ квадрата,чтобы найти сторону. d=2*9=18
рассматриваем прямоугольный равноедренный треугольник часть квадрата,т е треуг АСД,пусть сторона будет n,тогда по теореме пифагора
n^2+n^2=18^2
n=9---сторона квадрата,нахдим площадь квадрата S=n^2=9^2=81
легко теперь найти объем по формуле,которую ты должна знать,
V=1/3*S*H=1/3*81*12= 324.
вроде все
Данные диагонали пересекаются в одной точке и составляют 4 прямоугольных угла. Можем найти их углы по определению синуса (отношение противолежащего катета к гипотенузе) и косинуса (отношение прилежащего катета к гипотенузе), а стороны (гипотенузы) по теореме Пифагора.
Известны катет a= 5 и катет b = 12
Найдем гипотенузу прямоугольного треугольника. Для этого воспользуемся формулой Пифагора:
c ²=а²+b²
Тогда:
c = √ a²+b²
Подставляя значения a и b, получим:
c = √ ( 5 )² + ( 12 ) ²=13
Найдем, далее, острые углы прямоугольного треугольника
s i n A = a c = 5 *13 = 0.38
Отсюда:
∠ A = a r c s i n( 0.38 ) = 22.33 °
Найдем угол B:
∠ B = 90 ° − ∠ A = 67.67°
В итоге, я узнала, что углы одного из четырех треугольников, на которые был разделен ромб, равны 90°;67,67°; 22,33°. Т.к. эти диагонали являлись также и биссектрисами, то мы умножим на 2 углы. Таким образом, у ромба 2 угла по 135,34° и 2 угла по 44,66°