АВСД - прямоугольник. О точка пересечения диагоналей АС и ВД. АВ = 5 см, угол АОВ = 60. Диагонали прямоугольника равны и точкой пересечения делятся пополам. Треугольник АОС равнобедренный, так как АО = ОВ как половинки диагоналей. АВ - основание. Но если в равнобедренном тр-ке угол при вершине равен 60, то такой тр-ник равносторонний. Значит АО = ВО = СО = ДО = 5 см. Тогда диагонали АС = ВД = 5 * 2 = 10 см. По теореме пифагора найдем сторону АД. АД = √(100 - 25) = √75 = 5√3 см S = АВ * АД = 5 * 5√3 = 25√3 см^2
АВ = 5 см, угол АОВ = 60.
Диагонали прямоугольника равны и точкой пересечения делятся пополам.
Треугольник АОС равнобедренный, так как АО = ОВ как половинки диагоналей. АВ - основание. Но если в равнобедренном тр-ке угол при вершине равен 60, то такой тр-ник равносторонний.
Значит АО = ВО = СО = ДО = 5 см.
Тогда диагонали АС = ВД = 5 * 2 = 10 см.
По теореме пифагора найдем сторону АД.
АД = √(100 - 25) = √75 = 5√3 см
S = АВ * АД = 5 * 5√3 = 25√3 см^2